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Summary

1. Graph-Based Radiomic Features Enhance cancer diagnosis and treatment evaluation in

PET Imaging

2. Development of an organ-specific 18-FDG PET normative uptake atlas and clinical

application to the detection of organ inflammation

3. Generative Artificial Intelligence-Enabled Medical Image Generation for Improved

Generalization of Deep Learning Models in Data-Constrained Environments

4. Integrating Radiomic Features and Graph Neural Networks for Single Time-Point

Dosimetry in Lu-117 PSMA Therapy
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Graph-Based Radiomic Features in PET Imaging

Title: Graph-Based Radiomic Features Enhance cancer diagnosis and treatment 

evaluation in PET Imaging

      Context: 

• Tumor heterogeneity measurements

• Radiomics in PET 

• HN cancer, RFA treatment, NSCLC

      Current Challenge: 

• Lack of specificity for PET’s unique functional characteristics

• Structural/Spatial heterogeneity

      Proposed Solution: Novel set of graph theory-based radiomic features 

designed to capture both spatial and functional information in PET images

      Benefits: 

• Advancing/Enhancing PET image analysis.

Runqi Meng,

Shanghaitech University, 

Center for Advanced Medical 

Computing and Analysis, 

Department of Radiology, 

Massachusetts General 

Hospital, Harvard Medical 

School

Glossary:

HN = head and neck

RFA = radiofrequency ablation

NSCLC = non-small-cell lung cancer
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Graph-Based Radiomic Features in PET Imaging

Data and Methods:

•  3 datasets of PET/CT images:

• HN cancer, 

• RFA treatment on lung cancer

• NSCLC.

• Tumor ROIs manually contoured by radiologists.

• Model Artificial Neural Networks (ANN) with:

• 7:3 ratio for training and testing sets 

• gradient search cross-validation for hyperparameter tuning,

• 5-fold cross-validation to ensure robustness and minimize overfitting.

• Evaluation with accuracy, specificity, sensitivity, and the AUC. 

➔ Focus on recurrence prediction tasks for HN and RFA, and survival prediction tasks for NSCLC.

Glossary:

HN = head and neck

RFA = radiofrequency ablation

NSCLC = non-small-cell lung cancer
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Graph-Based Radiomic Features in PET Imaging

Graph theory-based framework:

• To extract novel radiomic features by 

modeling tumor regions as graphs.

• Voxels in the 3D matrix represented nodes 

and edges were defined by intensity 

differences. 

Glossary:

HN = head and neck

RFA = radiofrequency ablation

NSCLC = non-small-cell lung cancer
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Graph-Based Radiomic Features in PET Imaging

Graph theory-based framework:

• 32 graph metrics were computed to 

quantify intratumoral heterogeneity and 

structural properties. 

• These graph-based features were 

integrated with conventional texture-

based radiomic features to enable a 

more comprehensive analysis of tumor 

characteristics.

Glossary:

HN = head and neck

RFA = radiofrequency ablation

NSCLC = non-small-cell lung cancer
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Graph-Based Radiomic Features in PET Imaging

Results: Patient-wise Comparison of Survival Prediction: PET ROI and Graph Features

with similar 

SUVmean

with similar 

SUVmean
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Graph-Based Radiomic Features in PET Imaging

Results:

The combination of graph-based and 

texture-based radiomic features 

consistently outperformed texture-

based features alone across all three 

datasets.

Conclusions:

• New representation of tumor 

heterogeneity.

• Graph structure captures 

complementary spatial information to 

radiomics and enhances predictive 

accuracy.

Glossary:

HN = head and neck

RFA = radiofrequency ablation

NSCLC = non-small-cell lung cancer
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Organ-specific 18-FDG PET normative uptake atlas

Title: Development of an organ-specific 18-FDG PET normative uptake atlas 

and clinical application to the detection of organ inflammation

      Context: 

• Non-small cell lung cancer (NSCLC)

• Treatments are known to induce various immune-related adverse events 

(irAEs)

• 18-FDG PET/CT is an effective tool to early detect the organ inflammation

      Current Challenge: 

• Time consuming

• Lack of reproducibility and quantification

• Definition of normality

      Proposed Solution: Develop an organ-specific 18-FDG PET normative 

uptake atlas

      Benefits: 

• Reference for organ-specific 18-FDG PET normative uptake 

• Automatic detection of organ inflammation

Lucie Chambon, 

Department of Nuclear

Medicine, Centre Antoine 

Lacassagne, Université 

Côte d’Azur (UCA)

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer
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Organ-specific 18-FDG PET normative uptake atlas

Data:

1) Atlas development 

• Whole body 18-FDG PET/CT scans included after a visual check for no-inflammation by nuclear physicians 

(Olivier Humbert) from 

• 72 healthy subjects from Centre Antoine Lacassagne 

• 65 normal subjects from autoPET

• 120 organs segmented using TotalSegmentator. 

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer
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Organ-specific 18-FDG PET normative uptake atlas

Data:

2) Atlas usage = automatic detection of organ inflammation for 

NSCLC patients treated by immunotherapy

• Whole-body 18-FDG PET/CT scans from 95 NSCLC 

patients treated by immunotherapy at Centre Antoine 

Lacassagne.

• 3 PET/CT exams: at baseline, after 7 weeks, and 3 

months of treatment. 

• 7 organs (colon, duodenum, esophagus, pancreas, 

small bowel, thyroid gland and stomach) segmented 

using TotalSegmentator.

• Immune-induced inflammation in these organs was 

visually assessed by nuclear medicine physicians 

(ground truth). 

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer
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Organ-specific 18-FDG PET normative uptake atlas

Methods:

1) Healthy atlas: 

• Extraction of individual organ-specific PET intensity distributions 

• Organ-specific FDG uptake normative atlas modeled with Wasserstein barycenters methods

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer



14

Organ-specific 18-FDG PET normative uptake atlas

Methods:

2) Atlas usage = Automatic detection of organ inflammation for NSCLC patients treated by immunotherapy

• Individual organ-specific PET intensity distributions extracted through image segmentation.

• Deviation from the normal population reference assessed by computing a Wasserstein-type distance.

• Model to select threshold per organ.

• Evaluation using the area under the ROC curve (AUC).

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer
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Organ-specific 18-FDG PET normative uptake atlas

Wasserstein distance:

• The Wasserstein distance, also 

known as the optimal transport 

distance, is a measure of similarity 

between two probability distributions.
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Organ-specific 18-FDG PET normative uptake atlas

Wasserstein barycenter:

• An ‘average’ of several probability distributions, but according to the geometry of the Wasserstein distance.

• Merging several distributions while respecting their spatial structures.
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Organ-specific 18-FDG PET normative uptake atlas

Results: Thyroid gland
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Organ-specific 18-FDG PET normative uptake atlas

Results: Stomach 
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Organ-specific 18-FDG PET normative uptake atlas

Results and Conclusions: 

• The AUC scores for immune-induced inflammation detection in the 7 organs were > 70%. 

➔ Method’s good performance in detecting inflammation in different types of organs + validation of normative atlas

Glossary:

irAEs = immune-related adverse 

events

NSCLC = non-small cell lung cancer
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Generative Artificial Intelligence

Title: Generative Artificial Intelligence-Enabled Medical Image Generation for 

Improved Generalization of Deep Learning Models in Data-Constrained Environments

      Context: 

• 99mTc bone scintigraphy = nuclear medicine imaging technique used to help diagnose 

and assess different bone diseases because allowing visualisation of bone metabolism 

or bone remodelling, which most other imaging techniques (such as CT) cannot.

      Current Challenge: 

• Scarcity of large labelled datasets (critical for rare disease)

• Multi-institutional data sharing

      Proposed Solution: Create annotated synthetic medical images using a generative 

artificial intelligence approach 

      Benefits: 

• Enriching small-scale datasets with synthetic data

• Improve model training

• Enhance the generalization of models in real-world clinical practice

David Haberl,

Division of Nuclear 

Medicine, Department of 

Biomedical Imaging and 

Image-Guided Therapy, 

Medical University of 

Vienna, Vienna, Austria
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Generative Artificial Intelligence

Data:
 

Generative task:

• Training data = 99mTc-bone 

scintigraphy scans (2D projection) 

from 9,170 patients in Site A 

representing two clinical conditions: 

abnormal uptake indicative of bone 

metastases and cardiac uptake 

indicative of cardiac amyloidosis. 

Prediction task: 

• Training data = independent small 

single-center dataset (Site B) + 

synthetic scans from Site A

• Testing data = 7,472 scans from 

6,448 patients across four 

external sites (Site C-F) in a 

cross-tracer and cross-scanner 

setting.
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Generative Artificial Intelligence

Methods:
 

Generative task:

• Train a generative model (StyleGAN2)
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Generative Artificial Intelligence

Methods:
 

Generative task:

• Train a generative model (StyleGAN2)

• 4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a 

score specifying whether a given image was real or synthetic. 
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Generative Artificial Intelligence

Methods:
 

Generative task:

• Train a generative model (StyleGAN2)

• 4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a 

score specifying whether a given image was real or synthetic. 
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Generative Artificial Intelligence

Methods:
 

Generative task:

• Train a generative model (StyleGAN2)

• 4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a 

score specifying whether a given image was real or synthetic. 

Prediction task: 

• Training a deep learning model to detect abnormal uptake using real data and real + synthetic data.

• Convolutional neural network based on the DenseNet121 architecture 

• Models were pre-trained on the ImageNet database
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Generative Artificial Intelligence

Results and Conclusions: Generative task

• The four readers could not differentiate synthetic scans from real scans 

(average accuracy: 0.48 [95% CI: 0.45-0.51] for BoneMetastase-indicative uptake 

and 0.49 [95% CI: 0.46-0.52] for CardiacAmyloidosis-indicative uptake). 

• They disagreed in 60% of cases, having a high inter-observer variability.

➔ Generative AI facilitates the creation of synthetic bone scintigraphy images that 

accurately mimic realistic clinical feature. 

➔ These synthetic scans were indistinguishable from real patient scans, 

demonstrating their high quality and clinical validity. 
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Generative Artificial Intelligence

Results: Prediction task for Bone Metastasis
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Generative Artificial Intelligence

Results: Prediction task for Cardiac Amyloidosis 
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Generative Artificial Intelligence

Results: Prognostic value of the prediction model

Cardiac Amyloidosis Bone Metastase



31

Generative Artificial Intelligence

Results and Conclusions: Prediction task
 

Incorporating synthetic data into the training of a 

deep learning model increased the 

performance by an average (± SD) of 33% 

(±10) AUC for detecting abnormal uptake 

suggestive of bone metastases and by 5% 

(±4) AUC for identifying uptake indicative of 

cardiac amyloidosis. 

➔ Synthetic data can be used to augment 

small single-center databases to improve 

model generalization across internal and 

external patient cohorts. 

 

➔ These results highlight the potential of 

synthetic data to address data sharing 

challenges and improve fairness in medical 

classifiers.
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Radiomic Features and Graph Neural Networks for Dosimetry

Current Challenge: 

• Standard dosimetry requires multiple SPECT/CT scans to calculate TIA.

• STP methods (e.g., STP-M, STP-H) are limited by their inability to account for patient variability, cross-organ 

interactions, and their dependence on empirical models developed for specific radiotracers.

      Proposed Solution: A novel Graph Neural Network (GNN) model that uses radiomic features from a single 

SPECT/CT scan to predict TIA in 8 organs-at-risk. 

      Benefits: 

• More accurate and personalized dosimetry. 

• Minimizing radiation exposure to OARs.

Glossary:

OARs = organs at risks

MTP = multiple time-point

TIA = time-integrated activity

STP = single time-point

STP-M = Madsen single time-point

STP-H = Hänscheid single time-point

TACs = time activity curves

Vibha Balaji, 

Department of Biomedical

Engineering, University of 

Massachusetts Amherst

Title: Integrating Radiomic Features and Graph Neural Networks for Single Time-

Point Dosimetry in Lu-117 PSMA Therapy

      Context: 

• Lu-177 PSMA: A targeted radiopharmaceutical that delivers radiation specifically to 

prostate cancer cells expressing PSMA. 

• Imaging modality: SPECT/CT.
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Radiomic Features and Graph Neural Networks for Dosimetry

Data: 
 

• 34 patients undergoing Lu-177 PSMA therapy, encompassing 84 

dose cycles with 2–3 imaging time points acquired between 24- 

and 216-hours post-injection. 

• OARs = spleen, right kidney, left kidney, gallbladder, liver, 

stomach, pancreas, and prostate segmented TotalSegmentator. 

• 37 radiomic features (included first-order statistics, shape-based 

features, and texture features) were extracted using PyRadiomics 

and normalized using z-score.

• Spatial proximity between each pair of OARs was used as the 

edges of OAR-graph for each patient

➔ Input of GNN model

Glossary:

OARs = organs at risks

MTP = multiple time-point

TIA = time-integrated activity

STP = single time-point

STP-M = Madsen single time-point

STP-H = Hänscheid single time-point

TACs = time activity curves
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Radiomic Features and Graph Neural Networks for Dosimetry

Glossary:

OARs = organs at risks

MTP = multiple time-point

TIA = time-integrated activity

STP = single time-point

STP-M = Madsen single time-point

STP-H = Hänscheid single time-point

TACs = time activity curves

NRMSE = normalized root-mean-

squared error 

MAE = mean absolute error

Methods:
   

• MTP dosimetry was performed by 

fitting the TAC (= ground truth).

• GNN-based STP method

• The performance of the GNN-based 

STP method is compared with STP-H, 

STP-M, and MTP using metrics such as 

RMSE, NRMSE and MAE.
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Radiomic Features and Graph Neural Networks for Dosimetry

Results:
 

The GNN-based STP method 

demonstrated the lowest NRMSE and 

MAE (0.02455, 0.2597) across all dose 

cycles, outperforming STP-M (0.0296, 

0.3135) and STP-H (0.0457, 0.4841).

Conclusion: improving TIA estimation, 

outperforming existing STP methods and 

offering patient-specific, radiotracer-

agnostic solution for dosimetry.

Glossary:

OARs = organs at risks

MTP = multiple time-point

TIA = time-integrated activity

STP = single time-point

STP-M = Madsen single time-point

STP-H = Hänscheid single time-point

TACs = time activity curves

NRMSE = normalized root-mean-squared error 

MAE = mean absolute error
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Annexes
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What is Wasserstein distance? A discrete case
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