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Summary

1. Graph-Based Radiomic Features Enhance cancer diagnosis and treatment evaluation in
PET Imaging

2. Development of an organ-specific 18-FDG PET normative uptake atlas and clinical
application to the detection of organ inflammation

3. Generative Artificial Intelligence-Enabled Medical Image Generation for Improved
Generalization of Deep Learning Models in Data-Constrained Environments

4. Integrating Radiomic Features and Graph Neural Networks for Single Time-Point
Dosimetry in Lu-117 PSMA Therapy
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Graph-Based Radiomic Features in PET Imaging

@ Title: Graph-Based Radiomic Features Enhance cancer diagnosis and treatment Rungi Meng,

evaluation in PET Imaging Shanghaitech University,
Center for Advanced Medical

# Context: Computing and Analysis,

« Tumor heterogeneity measurements
« Radiomics in PET
* HN cancer, RFA treatment, NSCLC

Department of Radiology,
Massachusetts General
Hospital, Harvard Medical

A\ current challenge: School

 Lack of specificity for PET’s unique functional characteristics
 Structural/Spatial heterogeneity

Q Proposed Solution: Novel set of graph theory-based radiomic features
designed to capture both spatial and functional information in PET images

Benefits:
« Advancing/Enhancing PET image analysis.

Graph-based Tumor

(Enables structural heterogeneity modeling)

LITO 3



Graph-Based Radiomic Features in PET Imaging

Data and Methods:
« 3 datasets of PET/CT images:
* HN cancer,
» RFA treatment on lung cancer
* NSCLC.
« Tumor ROIs manually contoured by radiologists.
* Model Artificial Neural Networks (ANN) with:

« 7:3ratio for training and testing sets

Table . Summary of Patient Distribution Across Datasets

Total Patients Recurrent Cases Non-Recurrent Cases
RFA Dataset 49 12 37
HN Dataset 59 19 40
Total Patients Survived Cases Deceased Cases
NSCLC Dataset 112 81 31

« gradient search cross-validation for hyperparameter tuning,

« 5-fold cross-validation to ensure robustness and minimize overfitting.

« Evaluation with accuracy, specificity, sensitivity, and the AUC.

=>» Focus on recurrence prediction tasks for HN and RFA, and survival prediction tasks for NSCLC.

LITO



Graph-Based Radiomic Features in PET Imaging

Graph theory-based framework:

« To extract novel radiomic features by
modeling tumor regions as graphs.

« Voxels in the 3D matrix represented nodes
and edges were defined by intensity
differences.

PET Image with ROI '\,

3D tumor network 2D view of connectivity

\ Network Visualization

@ Central Voxel

& Ncighbor with
Weight=1
Nelghbor with

® Weight=12

® Nu Nelghhor

Weight Calculation
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Graph-Based Radiomic Features in PET Imaging
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Graph theory-based framework:

32 graph metrics were computed to
guantify intratumoral heterogeneity and
structural properties.

These graph-based features were
integrated with conventional texture-
based radiomic features to enable a
more comprehensive analysis of tumor
characteristics.

Feature Extraction Based on Graph (n=32)

v' Spanning Tree Features (2 features)

v’ Spectral & Energy Features (7 features)

v Node Degree Features (7 features)

v Density & Clustering Features (5 features)
v Shape & Motif Features (7 features)

v' PageRank Features (4 features)

LITO



Graph-Based Radiomic Features in PET Imaging

Results: Patient-wise Comparison of Survival Prediction: PET ROI and Graph Features

Non-Recurrent Recurrent Radar maps on graph features
1.8
ROIs-PET
with similar
SUVmean
14
SUVmean=1.47 SUVmean=1.48
2.8
ROIs-PET
with similar
SUVmean
18 |
SUVmean=2.18 SUVmean=2.23 — Non-Recurrent

= Recurrent

LITO 7



Graph-Based Radiomic Features in PET Imaging

Results: Recurrence Prediction in HN Dataset
The com b| n a.t| on Of g rap h 'baS ed an d M Texture-based Features M Graph-based Features Combined
texture-based radiomic features T800% 8410%gs500% 860 0% 0% 71.40% 73.50% 72.50% 08 0%
consistently  outperformed  texture- -
based features alone across all three l l
datasets.
Accuracy Specificity Sensitivity AUC
Recurrence Prediction in RFA Dataset
Conclusions: 0, 98.80% % % 0 0 099 099
S 95.00% 98.80% 0. 00% 97.50% 97.50% 85.00% 92.50% 97.50% i
* New representation of tumor
heterogeneity.
¢ Graph structure Captures Accuracy Specnﬁmty Sensitivity AUC

complementary spatial information to
radiomics and enhances predictive

Survival Prediction in NSCLC Dataset
92.80% 93.00% 92.90%

aCC u rla'cy' 85.20% 84.70% 87.40% 79.00% 81.80% I I 0 83
l . (V]
l . 77.50% |
Accuracy Specificity Sensitivity
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Organ-specific 18-FDG PET normative uptake atlas

I

@ Title: Development of an organ-specific 18-FDG PET normative uptake atlas
and clinical application to the detection of organ inflammation

f Context:

* Non-small cell lung cancer (NSCLC)

« Treatments are known to induce various immune-related adverse events
(irAEs)

» 18-FDG PET/CT is an effective tool to early detect the organ inflammation

A Current Challenge:

« Time consuming

 Lack of reproducibility and quantification
* Definition of normality

Q Proposed Solution: Develop an organ-specific 18-FDG PET normative
uptake atlas

Q Benefits:
» Reference for organ-specific 18-FDG PET normative uptake
« Automatic detection of organ inflammation

Lucie Chambon,
Department of Nuclear
Medicine, Centre Antoine
Lacassagne, Université
Cote d’Azur (UCA)

LITO
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Organ-specific 18-FDG PET normative uptake atlas
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Data:

1) Atlas development
* Whole body 18-FDG PET/CT scans included after a visual check for no-inflammation by nuclear physicians

(Olivier Humbert) from

« 72 healthy subjects from Centre Antoine Lacassagne

» 65 normal subjects from autoPET

» 120 organs segmented using TotalSegmentator.

CT scans

Organ
segmentation

FDG-PET scans

LITO
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Organ-specific 18-FDG PET normative uptake atlas

Data: lesions thyroiditis thyroiditis gastritis

2) Atlas usage = automatic detection of organ inflammation for
NSCLC patients treated by immunotherapy

* Whole-body 18-FDG PET/CT scans from 95 NSCLC
patients treated by immunotherapy at Centre Antoine
Lacassagne.

« 3 PET/CT exams: at baseline, after 7 weeks, and 3
months of treatment.

« 7 organs (colon, duodenum, esophagus, pancreas,
small bowel, thyroid gland and stomach) segmented
using TotalSegmentator.

* Immune-induced inflammation in these organs was
visually assessed by nuclear medicine physicians
(ground truth).

Before treatment 8 weeks of 12 weeks of
initialization treatment treatment

LITO 12



Organ-specific 18-FDG PET normative uptake atlas

Methods:

1) Healthy atlas:
« Extraction of individual organ-specific PET intensity distributions
» Organ-specific FDG uptake normative atlas modeled with Wasserstein barycenters methods

CT scans
normal database

Organ
segmentation

FDG-PET scans
normal database

v

Organ-specific PET
distribution extraction

Brain

s
!

I i ~If/\i

Organ-specific PET
distribution atlas
via Wasserstein

barycenters

Brain
L

Stomach

“ = she

LITO

13



Organ-specific 18-FDG PET normative uptake atlas

Methods:

2) Atlas usage = Automatic detection of organ inflammation for NSCLC patients treated by immunotherapy
+ Individual organ-specific PET intensity distributions extracted through image segmentation.
» Deviation from the normal population reference assessed by computing a Wasserstein-type distance.
» Model to select threshold per organ.
« Evaluation using the area under the ROC curve (AUC).

Individual
CT/FDG-PET scan

Organ-specific PET
distributions extraction

Brain Stomach

Compare organ-specific individual
PET distributions to normative atlas

Brain Stomach

Organ-specific
anomaly detection

® Lesion ?
e [nflammation ?

LITO
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Organ-specific 18-FDG PET normative uptake atlas

Wasserstein distance:

« The Wasserstein distance, also
known as the optimal transport
distance, is a measure of similarity

between two probability distributions.

Given two 1D probability mass functions, w and v, the first Wasserstein distance

between the distributions is:
Witwo) = inf [ Jo—yldn(e,y
mel(u,w) SRR

where I'(u, v) is the set of (probability) distributions on R x R whose marginals
are u and v on the first and second factors respectively. For a given value z, u(x)

gives the probability of u at position x, and the same for v(x).

If U and V are the respective CDFs of u and v, this distance also equals to:

+00
W)= [ U=V

oo

LITO
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Organ-specific 18-FDG PET normative uptake atlas

Wasserstein barycenter:

Given N probability distributions iy, o, ..., uy on R,

with weights A1, ..., Ay (such that 21 A =1),
the Wasserstein-1 barycenter v* minimizes:

1.0 4 ==~ Distribution 1

~ =~ Distribution 2

An ‘average’ of several probability distributions, but according to the geometry of the Wasserstein distance.
Merging several distributions while respecting their spatial structures.

Barycentre Wasserstein 1D

—=—~ Distribution 3
—=~ Distribution 4

0.8 4 A gt
—=~ Distribution 5

— Barycentre Wasserstein

\
\
\
1
1
1
1
1
1
1
\
\
0.6 1 t
- \
B 1
[ 1
z \
N 0.4 4 1‘
* . |‘
v* = argmin E i Wi (v, ;) \
v . 0.2 1 \
1=1 ’ '
\
\
\\
0.0 =
= 5 ; : : : : 5
X
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Organ-specific 18-FDG PET normative uptake atlas

Results: Thyroid gland

e e e e e e T L s

Distance to reference = 13.75
= Hypermetabolism

IHIDETITE SNE TAtent A TR P (PPRIREN 6 4% MaR DR 44 51 RENN M POUIRL L AVbidie

Distance to reference = 0
= Normal uptake

O =l B

0

LI o
- ol
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Organ-specific 18-FDG PET normative uptake atlas

Results: Stomach

B A e e e e e R R N VL

Distance to reference = 2.52
ﬂ) = Hypermetabolism

By a, awad hndre, bew desens b (e rean B TR s e T8 4 oo o MARAAS AT RRTY Y

Distance to reference = 0
= Normal uptake

= -

LITO 18
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Organ-specific 18-FDG PET normative uptake atlas

« The AUC scores for immune-induced inflammation detection in the 7 organs were > 70%.
= Method’s good performance in detecting inflammation in different types of organs + validation of normative atlas

organ threshold sensitivity specificity ROC AUC accuracy # infl # no infl
~olon 0.507 0.783 0.688 0.736 0.697 23 231
duodenum 0.23 0.75 0.768 0.745 0.768 8 246
esophagus 0.155 0.75 0.736 0.739 0.736 8 246
pancreas 0.004 1 0.972 0.986 0.972 1 253
small bowel 0.542 0.667 649 0.654 0.65 9 245
stomach 0.2 0.8 0.738 0.857 0.748 40 214
thyroid gland 0.095 0.913 0.943 0.979 0.94 23 228

LITO 19
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Generative Artificial Intelligence

@ Title: Generative Artificial Intelligence-Enabled Medical Image Generation for
Improved Generalization of Deep Learning Models in Data-Constrained Environments

/} Context:

* 99mTc bone scintigraphy = nuclear medicine imaging technique used to help diagnose
and assess different bone diseases because allowing visualisation of bone metabolism
or bone remodelling, which most other imaging techniques (such as CT) cannot.

A Current Challenge:

» Scarcity of large labelled datasets (critical for rare disease)
» Multi-institutional data sharing

O

Proposed Solution: Create annotated synthetic medical images using a generative
artificial intelligence approach
Q Benefits:

« Enriching small-scale datasets with synthetic data
* Improve model training

« Enhance the generalization of models in real-world clinical practice

David Haberl,
Division of Nuclear
Medicine, Department of
Biomedical Imaging and
Image-Guided Therapy,
Medical University of
Vienna, Vienna, Austria

LITO
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Generative Artificial Intelligence

Data:
Generative task:

e Training data = 99mTc-bone e e m - -
scintigraphy scans (2D projection) Site A (n=9,170) : Site B (n=181) External testing (n=6,448)

I

1

from 9,170 patients in Site A

|
|
= I B
. .. .- ke | oy ) 1 | oF | 2
representing two clinical conditions: : i , Uste g e [+ | ol | i l
. . . -4 B 2 m XIU | | I I
abnormal uptake indicative of bone MRy a I p: eE * | | | FRKAEARE
metastases and cardiac uptake | e e l ! : | o t .
. . . . . . | ' 1'Y ]
indicative of cardiac amyloidosis. ' : Ll M
‘ | [
Prediction task: Large-scale database : Small-scale local database | 4 sites
) Real patient data I Real patient data I 2 tracers, 4 scanners
» Training data = independent small | [ | : |
single-center dataset (Site B) + Generative model ; Development of deep I Prediction of uptake indicative of:
synthetic scans from Site A training @ I learning models I Bone metastases
l I | Cardiac amyloidosis

» Testing data = 7,472 scans from
6,448 patients across four
external sites (Site C-F) in a
cross-tracer and cross-scanner
setting.

Synthetic imaging data

LITO 22



Generative Artificial Intelligence
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Methods:

Generative task:

« Train a generative model (StyleGAN2) *_ _ : .
. - Real Yok | Discriminator
Real images > : N - |
image | loss
L
© CA-indicative
S Discriminator
] i
Generator Synthetic 1. 54 Generator
[ image loss
e
£ H |
65 " Backpropagation !
© o b e e e e e e —— i —————————————— I
cc
W =
o
29 3g
"% 5%  Conditions (labels):

XY 3y 1. Regularscan
2. BMe-indicative uptake
3. CA-indicative uptake

LITO
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Generative Artificial Intelligence

Methods:

Generative task:

« Train a generative model (StyleGAN2)
4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a

score specifying whether a given image was real or synthetic.

Which are real and which are synthetic?

24

LITO



Generative Artificial Intelligence

Methods:

Generative task:
« Train a generative model (StyleGAN2)

» 4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a
score specifying whether a given image was real or synthetic.

f f ? 7 : | '
L | - A '
synthetic synthetic real synthetic real real

LITO 25
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Generative Artificial Intelligence

Methods:

Generative task:
« Train a generative model (StyleGAN2)

» 4 nuclear medicine physicians evaluated the quality and clinical validity of the generated synthetic images using a
score specifying whether a given image was real or synthetic.

Prediction task:
« Training a deep learning model to detect abnormal uptake using real data and real + synthetic data.
« Convolutional neural network based on the DenseNet121 architecture

* Models were pre-trained on the ImageNet database

LITO 26



Generative Artificial Intelligence
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Results and Conclusions: Generative task

« The four readers could not differentiate synthetic scans from real scans
(average accuracy: 0.48 [95% CI: 0.45-0.51] for BoneMetastase-indicative uptake
and 0.49 [95% CI: 0.46-0.52] for CardiacAmyloidosis-indicative uptake).

« They disagreed in 60% of cases, having a high inter-observer variability.

= Generative Al facilitates the creation of synthetic bone scintigraphy images that
accurately mimic realistic clinical feature.

= These synthetic scans were indistinguishable from real patient scans,
demonstrating their high quality and clinical validity.

Site A (n=9,170)

b 4Pl 8

fal 1A |

b =4

.

'

|/

Large-scale database
Real patient data

Generative model
training

|

Synthetic imaging data

LITO

27



Generative Artificial Intelligence
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Test AUC

Test AUC

1.000 4
0.900 1
0.850 1
0.800 1
0.750
0.700 1
0.650 1
0.600 1
0.550 1 -
0.500 1
0.450 1

1.000 4

Results: Prediction task for Bone Metastasis

Site B (internal)

AUC (real data): 0.44] [

Site C (external) Site D (external)

- [AUC (real data): 0.62

AUC (real data): 0.49

543 1086 1991 4706 9231 18281

Training set size

Site E (external)

0.850 4o o

0.800 1
0.850
0.800 1
0.750
0.700 1
0.650
0.600
0.550 =
0.500 1
0.450

543 1086 1991 4706 9231 18281 181 362 543 1086 1991 4706 9231 18281

Training set size Training set size

Site F (external)

@ Real and synthetic data

- Synthetic data

4~ Bascline (real data)

543 1086 1991 4706 9231 18281

Training set size

543 1086 1991 4706 9231 18281

Training set size

LITO
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Generative Artificial Intelligence

Results: Prediction task for Cardiac Amyloidosis

Site B (internal) Site C (external) Site D (external)

[AUC (real data): 0.98)

[AUC (real data): 0.97] |

[AUC (real data): 0.90)

181 362 543 1086 1991 4706 9231 18281 181 362 543 1086 1991 4706 9231 18281 181 362 543 1086 1991 4706 9231 18281
Training set size Training set size Training set size
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Generative Artificial Intelligence

Results: Prognostic value of the prediction model

Bone Metastase ’

1.0
—— ;
0.8 1
2
3 0.6
el
2
o o ;
© - -~ - b -
g 0.4 1 ‘.{*‘; ‘q 5' 3
3 A 2
[7a] ! :
0.2 1
Model prediction | 1 |
—— BM-indicative Log-rank p<0.0001 ——
—— Non BM-indicative HR 3.76 (95% Cl 2.74-5.17)
0.0 T T T T T T

0 5 10 15 20 25 30
Time since scintigraphy (months)

35

HF-associated hospitalization probability

1.0

o
o0
L

o
)]
1

o
i<y
1

o
N
1

0.0

Cardiac Amyloidosis

— ~— —

|

'L
&
Model prediction

—— CA-indicative
—— Non CA-indicative

Log-rank p<0.0001 5

HR 5.43 (95% Cl 3.12-9.46)

T T T T T

0 5 10 15 20 25 30 35 40
Time since scintigraphy (months)
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Generative Artificial Intelligence
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Results and Conclusions: Prediction task

Incorporating synthetic data into the training of a Model perfﬂnnance

deep learning model increased the
performance by an average (£ SD) of 33%
(£10) AUC for detecting abnormal uptake
suggestive of bone metastases and by 5%
(£4) AUC for identifying uptake indicative of
cardiac amyloidosis.

=
(=]

= Synthetic data can be used to augment
?nmfallll smgle-cle_ntte_r databases_ tto |m|prov§ +33% ALC +5% AUC

odel generalization across internal an BM-indicative CA-indicative
external patient cohorts. '

True positive rate
=
L

=
o

0.0 0.5 1.0 0.0 0.5 1.0
=» These results highlight the potential of False positive rate False positive rate
synthetic data to address data sharing
challenges and improve fairness in medical
classifiers.

— Trained on local data — Added synthetic data

LITO
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Radiomic Features and Graph Neural Networks for Dosimetry

@ Title: Integrating Radiomic Features and Graph Neural Networks for Single Time- Vibha Balaji,

Point Dosimetry in Lu-117 PSMA Therapy Department of Biomedical

} _ Engineering, University of
Context. Massachusetts Amherst

* Lu-177 PSMA: A targeted radiopharmaceutical that delivers radiation specifically to
prostate cancer cells expressing PSMA.
« Imaging modality: SPECT/CT.

A Current Challenge:
» Standard dosimetry requires multiple SPECT/CT scans to calculate TIA.
« STP methods (e.g., STP-M, STP-H) are limited by their inability to account for patient variability, cross-organ

interactions, and their dependence on empirical models developed for specific radiotracers.

SPECT/CT scan to predict TIA in 8 organs-at-risk.

Q Proposed Solution: A novel Graph Neural Network (GNN) model that uses radiomic features from a single

Q Benefits:
* More accurate and personalized dosimetry.
* Minimizing radiation exposure to OARs.

LITO 33
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Radiomic Features and Graph Neural Networks for Dosimetry

Data: »
Registered + Segmented—, Radiomics and Graph _
* 34 patients undergoing Lu-177 PSMA therapy, encompassing 84 SPECT/CT Construction

dose cycles with 2-3 imaging time points acquired between 24-
and 216-hours post-injection.
« OARs = spleen, right kidney, left kidney, gallbladder, liver,
stomach, pancreas, and prostate segmented TotalSegmentator.
« 37 radiomic features (included first-order statistics, shape-based

features, and texture features) were extracted using PyRadiomics

and normalized using z-score.
« Spatial proximity between each pair of OARs was used as the

edges of OAR-graph for each patient

= Input of GNN model

LITO 34



Radiomic Features and Graph Neural Networks for Dosimetry
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Registered + Segmented—, Radiomics and Graph — GNN-based Prediction <> Compare with existing

SPECT/CT Construction STP methods
: Graph Attention
Network
Ay = A e
W= H= (e
concat(a(zje:(i) ag W - hy)) In(2)
ekt

Fig. 2.Workflow of data processing and STP methods

® The train set encompassed 58 (70%) and the test set had 26 (30%) out of
the 84 dose cycles across all subjects.

® The high-dimensional node inputs were passed through an encoder for
feature reduction from 37 to 2.

* A graph attention network (GAT) was chosen as the GNN and
implemented to predict OAR-specific TIA using z-score normalized
radiomic features and inter-organ connectivity.

®* The GAT model used 3 layers, 128 hidden channels, learning rate 5e-4,
500 epochs to predict the TIA (STP-GNN), compared with MTP TIA as
ground truth using the L2 loss function.

Methods:

* MTP dosimetry was performed by
fitting the TAC (= ground truth).

* GNN-based STP method

* The performance of the GNN-based
STP method is compared with STP-H,
STP-M, and MTP using metrics such as
RMSE, NRMSE and MAE.

LITO
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Radiomic Features and Graph Neural Networks for Dosimetry
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Mean Median
MAE RMSE NRMSE
0.6 I 6
) ) ) l ) 0.6
204 3075 3
> > >
£ £050 g4
02
pa i > s | i > *
il 3 0.2
0.0 0.00
STP-H  STP-M  STP-GNN STP-H  STP-M STP-GNN STP-H  STP-M STP-GNN
STP-H STP-M STP-GNN
Spleen 0.306 0.367 0.331
Right Kidney 0.487 0302 0.264 08
Left Kidney 0.895 0.439 0.309
< Gall Bladder 0.168 0.254 0.251 0.6
@) Liver 0.672 0.184 0.230
Stomach 0.272 0314 0.269 0.4
Pancreas 0.382 0.305
Prostate 0.296 0.292 0.2

Fig. 3. (Top) Whisker plots of MAE, RMSE, and NRMSE across subjects
(Bottom) OAR-wise NRMSE values for STP-H, STP-M, and STP-GNN

Results:

The GNN-based STP method
demonstrated the lowest NRMSE and
MAE (0.02455, 0.2597) across all dose
cycles, outperforming STP-M (0.0296,
0.3135) and STP-H (0.0457, 0.4841).

Conclusion: improving TIA estimation,
outperforming existing STP methods and
offering patient-specific, radiotracer-
agnostic solution for dosimetry.

LITO
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Development of an organ-specific 18-FDG PET normative uptake atlas and clinical

application to the detection of organ inflammation

4

lrezia—

Lucie Chambon', Francesco Cremonesi', Huyen Trang Nguyen', Olivier Humbert*®, Marco Lorenzi'

" Inria Center at Université Cote d’Azur, Epione Research Group, France

2 Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Cote d’Azur (UCA), 33 Avenue de Valombrose, 06189 Nice, France

3 Université Cote d’Azur, CNRS, Inserm, iBV, Nice, France

Antoine Lacassadne

CENTRE DE LUTTE CONTRE LE CANCER

unicancer NICE

1. INTRODUCTION 2. METHODS 3. RESULTS

A) CONTEXT

18-FDG PET images are widely used for detecting tumors or
inflammation through visual checks and semi-quantitative
metrics based on SUV. However, these methods are time
consuming and lack of robustness and reproducibility.
Therefore, there is a need for tools that can automatically
quantify abnormal metabolic uptake.

For this purpose, and given the heterogeneity of the data, it
is essential first to define what is ‘normality’.

B) OBJECTIVES

Develop an organ-specific 18-FDG PET normative uptake
atlas from a representative set of images of healthy patients
and validate this atlas for the automatic detection and
quantification of organ inflammation

lesions thyroiditis

thyroiditis gastritis

12 weeks of
treatment

8 weeks of
treatment

Before treatment
initialization

A) DEVELOP AN ORGAN-SPECIFIC 18-FDG PET NORMATIVE UPTAKE DISTRIBUTION ATLAS

Whole-body 18-FDG PET/CT scans from 72 healthy patients of Centre Antoine Lacassagne and 65
normal patients from autoPET [1] database were included after visual check for no-inflammation by
nuclear physicians. From CT scans, organ were segmented with TotalSegmentator [2], and the
corresponding individual organ-specific PET intensities distributions were extracted. The final
organ-specific FDG uptake normative atlas was computed with Wasserstein barycenter [3]

s Organ-specific PET
‘Organ-specific PET distribution i
via Wasserstein
CT scans FDG-PET scans
normal database nommal database Brain
N m

-

B) ATLAS USAGE FOR AUTOMATIC QUANTIFICATION OF ORGAN INFLAMMATION

Individual organ-specific PET intensities distributions are extracted through image segmentation, and
their deviation from normal population reference is assessed with Wasserstein distance.

Organ-specific
‘anomaly detection
“ * Lesion ?

o Inflammation 7

(1] Gatidis, Sergios, et al. "A whole-body FDG-PET/CT dataset with manually annotated tumor lesions." Scientific Data 9.1
(2022): 601.

[2] Wasserthal, Jakob, et al. "TotalSegmentator: robust segmentation of 104 anatomic structures in CT images." Radiology:
Artificial Intelligence 5.5 (2023): €230024.

[3] Agueh, Martial, et al. "Barycenters in the Wasserstein space." SIAM Journal on Mathematical Analysis 43.2 (2011):
904-924.

Whole-body 18-FDG PET/CT scans from 95 non-small cell lung cancer
(NSCLC) patients treated by immunotherapy of Centre Antoine
Lacassagne were included. Among this cohort, the detection of
immune-induced inflammation in 7 organs was visually assessed by nuclear
medicine physicians.

The ability of the method to automatically detect organ inflammation was
evaluated with area under the ROC curve (AUC), and the metric threshold was
optimized to maximize sensitivity and specificity

organ threshold | sensitivity specificity ROC AUC accuracy #infl #noinfl
colon 0.507 0.783 0.688 0.736 0.697 23 231
duodenum 023 0.75 0.768 0.749 0.768 8 246
esophagus 0.155 0.75 0.736 0.739 0.736 8 246
pancreas 0.004 1 0.972 0.986 0.972 1 253
small bowel 0.542 0.667 0.649 0.654 0.65 9 245
stomach 0.2 08 0.738 0.857 0.748 40 214
thyroid gland 0.095 0913 0.943 0.979 0.94 23 228
Infiammation thyroid gland Normal thyroid gland

= No abnormality detection

4. CONCLUSION

The method shows good performance in detecting inflammation in different
types of organs, validating the use of the normative atlas.

Further developments include:

- Increasing the hospital diversity of the normal database for greater
robustness

- Incorporating an external database for external validation

- Using this metric to predict survival outcome
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University of Integrating Radiomic Features and Graph Neural Networks for Single Time-Point Dosimetry in Lu-177 PSMA Therapy
Massachusetts Vibha Balaji', Bowen Lei!, Fan Yang'!, Quanzheng Li%, Michael King?, Joyita Dutta'
A h t Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA Annual Mecting
mAers 2Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital, Boston, MA, USA S
3Department of Radiology, UMass Chan Medical School, Worcester, MA, USA Abstragt #242004
Introduction \ Methods \ / Results \
Background Data Description and Processing * STP-GNN consistently outperformed both STP-H and STP-M across all
* Radiopharmaceutical therapy (RPT) utilizes targeted radionuclides to * We analyzed SPECT/CT scans from 34 patients undergoing Lu-177 PSMA metrics, demonstrating the |°We“_mean absolute error (MAE), root mean
treat cancer, with Lu-177-prostate-specific-membrane-antigen (PSMA) therapy, encompassing 84 dose cycles with 2-3 imaging time-points square error (RMSE) and normalized root mean square error (NRMSE)
showing promise for metastatic castration-resistant prostate cancer. acquired between 24- and 216-hours post-injection. SPECT images were (9'2“ I,0.5057, 0.2023), compared to STP-M (0.3252, 0.5866, 0.3083) and
; poafipm STP-H (0.4636, 0.9464, 0.3657)
* Quantitative dosimetry in RPT is used to gauge the amount of radiation registered to CT using SimplelTK on Python. o i 2 e )
dose absorbed by both tumor cells and organs-at-risk (OARs). Multiple Eight organs-at-risk (OARs) were selected for the TIA analysis, namely the :h's “e"q 'Sh f<|)||owed a-c:::.ss |ndmduabll Qs with  STE-GRN
time-point (MTP) SPECT imaging is employed for accurate dose spleen, right kidney, left kidney, gallbladder, liver; stomach, pancreas and the emanstrating the ;owestvarablliofiacross:subjects.
estimation. prostate. OAR segmentation was performed using the TotalSegmentator Mean Median
* Time-integrated activity (TIA) is a precursor to estimating the radiation tool. s MAE RISE ] NRHSE
dose and is calculated by fitting the time-activity curve (TAC) from * 37 radiomic features were extracted for each OAR using PyRadiomics, ‘ 100 ‘ 06
multiple SPECT/CT imaging timepoints. including first-order intensity, shape, and texture-based features. Feature- Sos T So7s ]
Challenge wise normalization was performed to ensure stable learning. E - '?éoso T ! ?_go“ T
* MTP imaging is resource-intensive, since the multiple SPECT scans * MTP dosimetry was performed by fitting the TAC with bi-exponential £02 I z"ozs I £ F -
increase burden on patients and clinical workflows. functions [3]. ‘ l 02 1 s
* Established single time-point (STP) TIA estimation methods like * Spatial proximity between each pair of OARs was derived from the CT U T o e T B T reY Y
Hiinscheid (STP-H) [1] and Madsen (STP-M) [2] are proposed primarily scan a's the ?dges. thus constructing and O/:M?-grflph for each patient . STP-H STP-M STP-GNN
for Lu-177 DOTATATE and may not fully capture the kinetics of Lu-177 * The dmepoint ciasest 1o 48 hours postinlscacy wes chossn: for all 3 Spleen [ 01306 0367 0331 -
PSMA dosimetry. Additionally, they rely on oversimplified assumptions of methods as it was the optimal value for STP-M and STP-H. Right Kidney 0.487 0.302 0264 ’
radiotracer decay fail to consider patient-specific parameters that might Network Architecture v LTBTI:MY ' ' g;g? %
influence distribution patterns. & Gl Bladaen : : : ’
o A e e~ Compare with existing lo) Liver 0.184 0.230
Objective me Stomach 0272 0314 0.269 04
Graph Attention Y
* The objective of this study is to propose a graph neural network (GNN)- ’ Neriark Pancreas 0.305
based STP TIA-estimation approach, which uses radiomic features 2 TlAy = AGt)- 2t Prostate | 0.296 0292 0.2
extracted from a single SPECT/CT scan and predicts the TIA for eight ) oo g W ") 2 In(2) Fig. 3. (Top) Whisker plots of MAE, RMSE, and NRMSE across subjects
organs-at-risk relevant to Lu-177 PSMA. | ekt (Bottom) OAR-wise NRMSE values for STP-H, STP-M, and STP-GNN
x = —
* This approach enables more personalized, efficient, and data-driven TIA | = | HinmAL) k
% TlAGyn Conclusions

estimation using a single imaging timepoint.
* Our proposed STP-GNN is evaluated against STP-H and STP-M using
MTP-derived TIA as ground truth. .

* STP-GNN offers a fast, personalized alternative to empirical STP methods
with superior accuracy and consistency.
* In future, we will extend our work to segmented lesions and investigate

Fig. 2.Workflow of data processing and STP methods
The train set encompassed 58 (70%) and the test set had 26 (30%) out of

= the 84 dose cycles across all subjects. I-level STP hod
t t ( t * The high-dimensional node inputs were passed through an encoder for R DRSRER
1 2 (B8 e 3 § 3 By s‘; 37 I; IWELS pass QHgN: AN encoder:1ol References
S Fature’teduction Tromy3/-to 12. [1] Hanscheid H, Lapa C, Buck AK, Lassmann M,Werner RA. Dose Mapping After
// * A graph attention network (GAT) was chosen as the GNN and Endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a Single Measurement

implemented to predict OAR-specific TIA using z-score normalized
radiomic features and inter-organ connectivity.

* The GAT model used 3 layers, 128 hidden channels, learning rate 5e-4,
500 epochs to predict the TIA (STP-GNN), compared with MTP TIA as
ground truth using the L2 loss function.

After 4 Days. | Nucl Med. 2018;59:75-81.

[2] Madsen MT, Menda Y, O'Dorisio TM, O'Dorisio MS. Single time point dose
estimate for exponential clearance. Med Phys. 2018;45:2318-2324.

[3] Ivashchenko OV, O'Doherty J, Hardiansyah D, et al. Time-Activity data fitting in
molecular Radiotherapy: Methodology and pitfalls. Phys Med. 2024;117:103192.
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Fig. . Concept: STP as a practical alternative to MTP TIA estimation




What is Wasserstein distance? A discrete case

Let us first look at a simple case where the probability domain is discrete. For example, suppose we
have two distributions P and @), each has four piles of dirt and both have ten shovelfuls of dirt in

total. The numbers of shovelfuls in each dirt pile are assigned as follows:

PL=3,P,=2P,=1,P =4
01=1,0Q2=2,Q3=4,Q,=3

In order to change P to look like @, as illustrated in Fig. 7, we: Step [0] Step [1] Step [2] Step [3]
5 5 5 5
o,
¢ First move 2 shovelfuls from P; to Py => (P;, Q1) match up. = 41 T
5 3L H— .
* Then move 2 shovelfuls from Ps to P => (P, Q2) match up. “T;) | |
o 1 1 1
* Finally move 1 shovelfuls from Q3 to Q4 => (P3, @3) and (Py, Q4) match up. 7 14 [D |E-—’ D:l ’:E|
0L : : T . :
If we label the cost to pay to make P; and Q); match as §;, we would have 5 Pr P P P Ps

0iy1 =0; + P; — Q; 24'
5o =0 T,
51=0+3_1=2 5.

H#

Gy =24+2-2=2
53 =211—-4=-1 Q1 Q@ Q3 4 O Q@ Q3 O Qr Q@ Q3 Q4 h Q@ Q3 4

Si=—-1+4-3=0

(=}
I

Figure 7: Step-by-step plan of moving dirt between piles in P and @ to make

Finally the Earth Mover's distance is W = > |§;| = 5. them match.
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