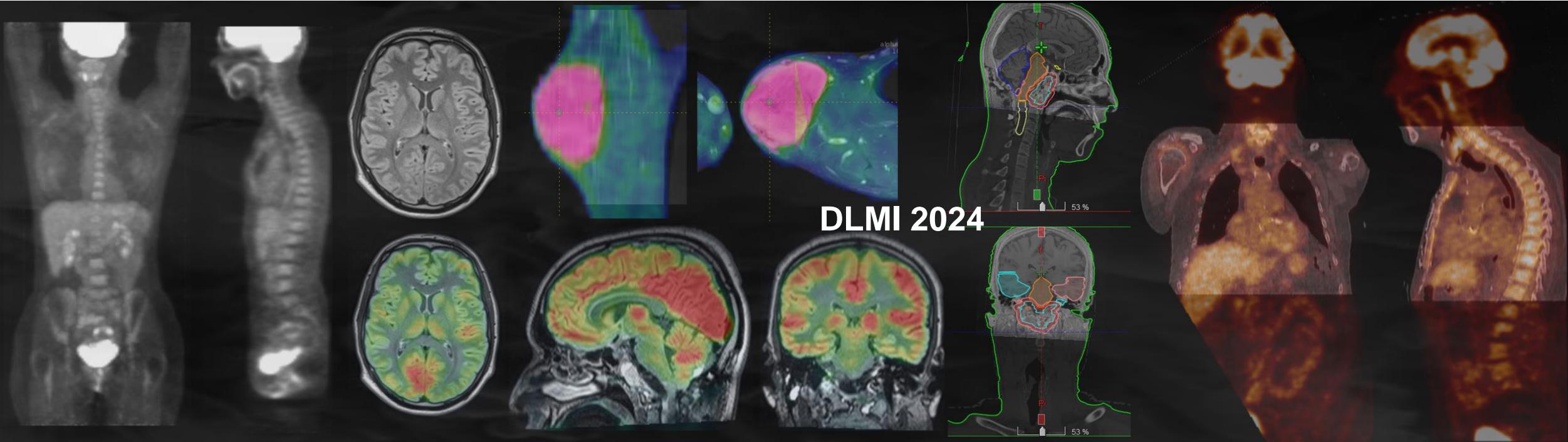


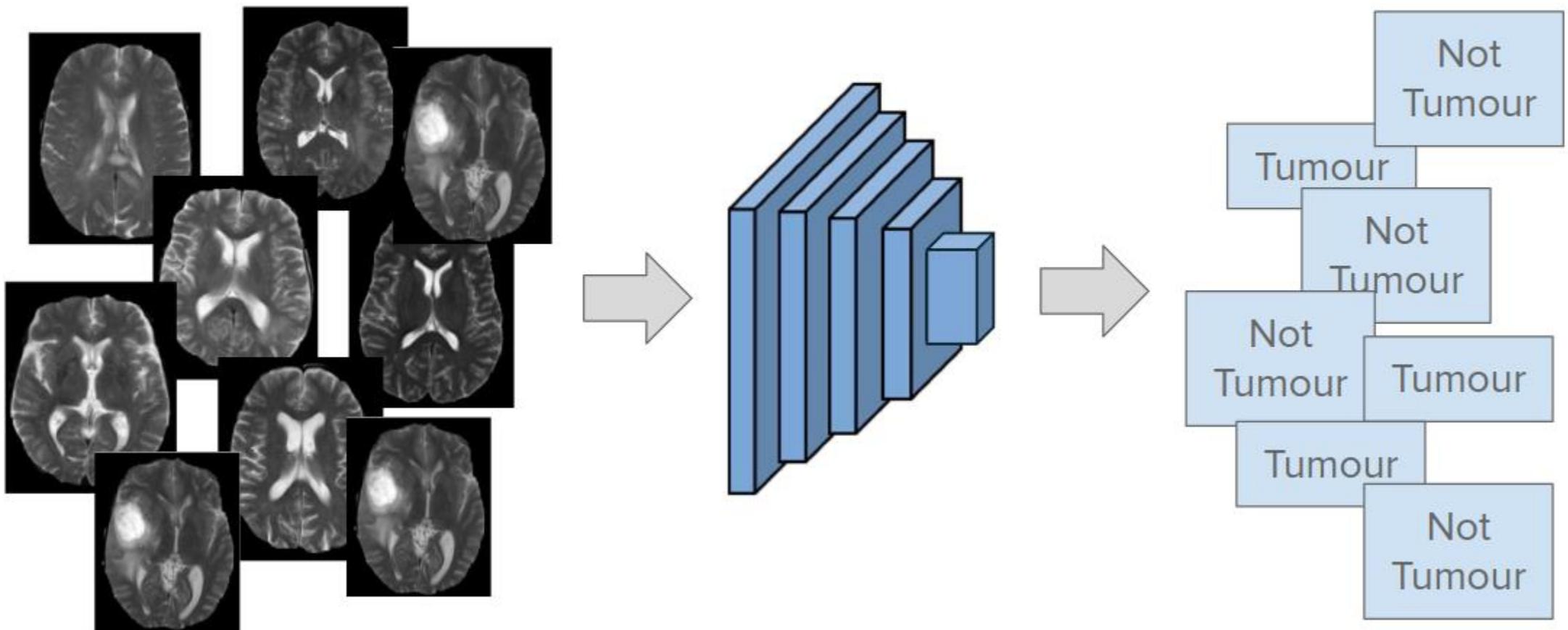
LITO



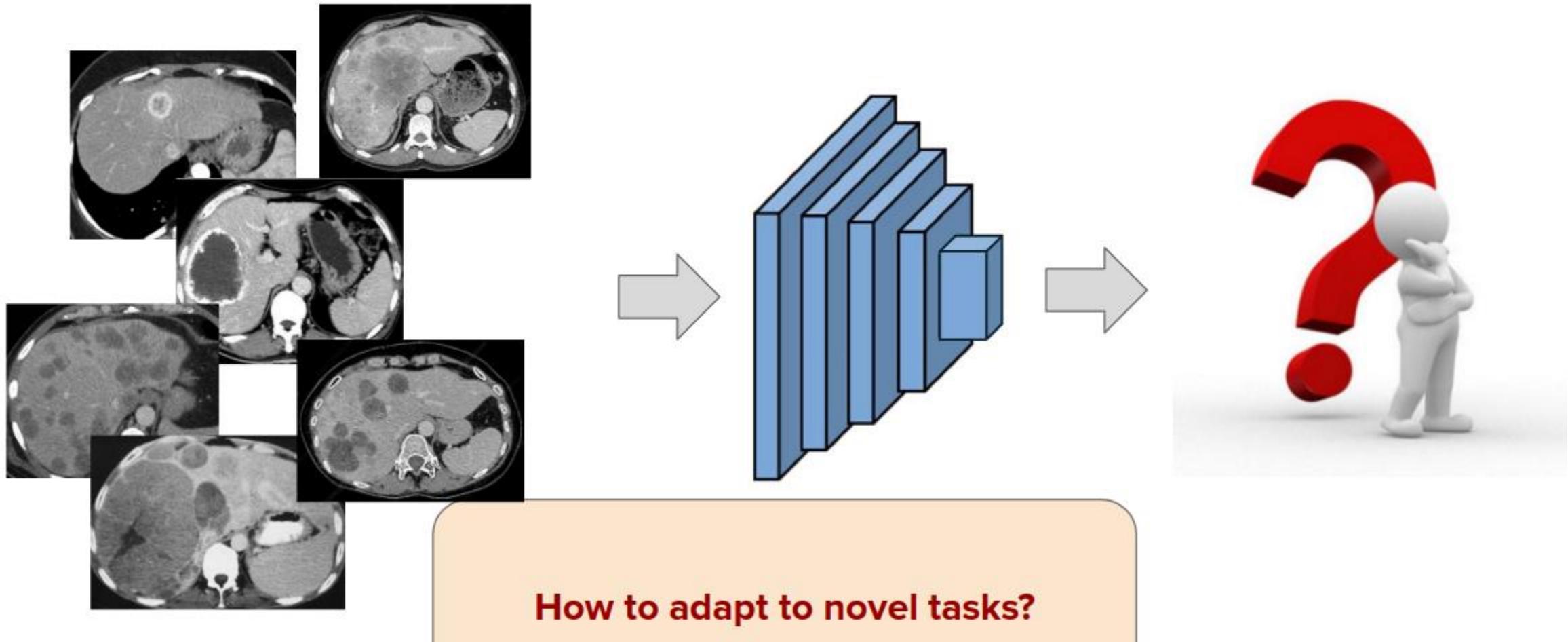
DLMI 2024 – Deep Learning for Medical Imaging – Summer School

- Summer school on deep learning methods in the context of medical imaging (5th edition)
- 1 week with conferences and hands-on sessions at ETS Montreal
- Topics:
 - Basics of DL
 - CNN
 - GAN – Diffusion models
 - RNN – Transformers
 - Uncertainty Quantification
 - Medical images typical issues
 - Self-supervised – Weakly supervised learning
 - Foundation models
 - MONAI

Traditional (task-specific) learning



Traditional (task-specific) learning



Traditional (task-specific) learning

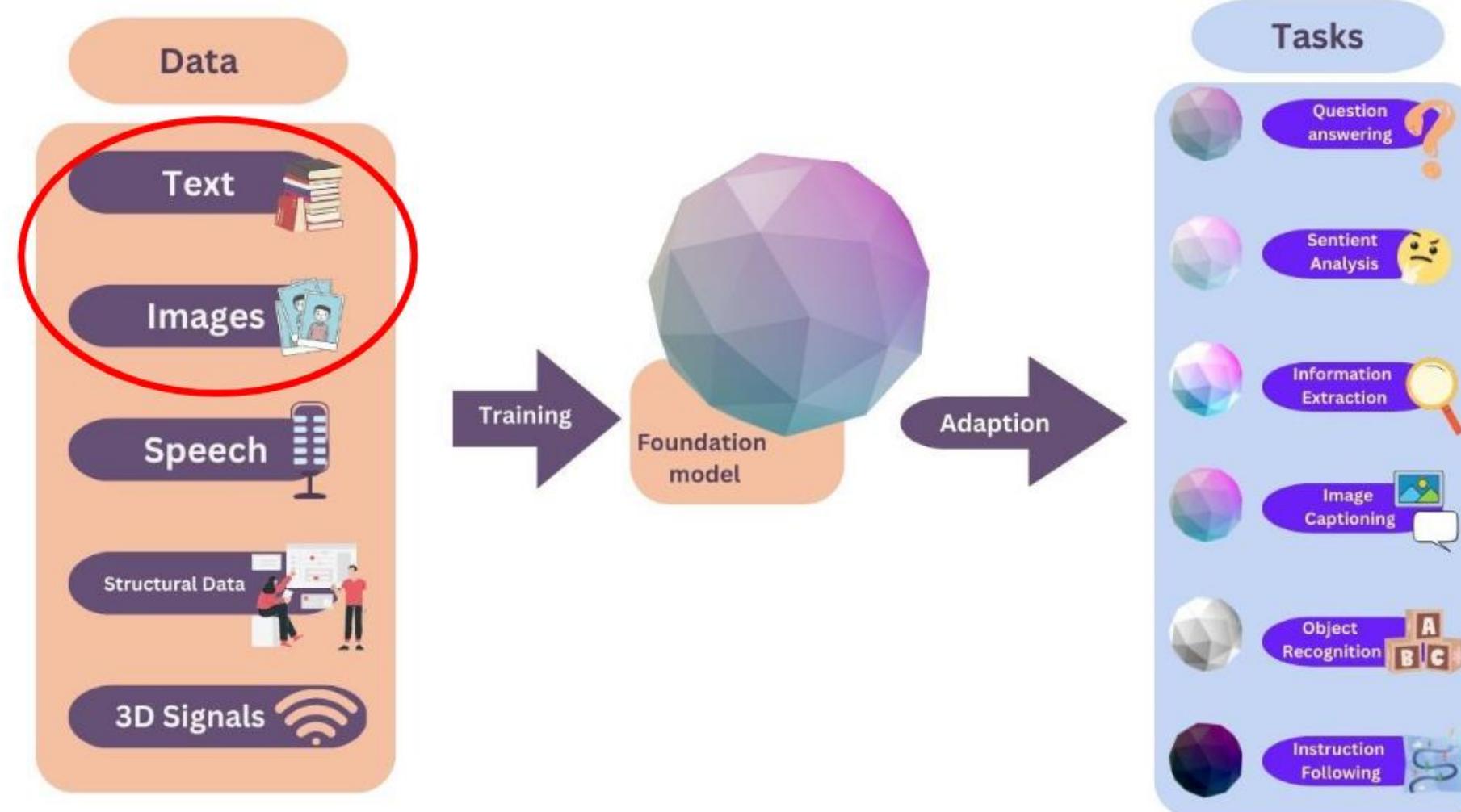
- A substantial amount of target samples need to be labeled
- Large scale labeled datasets may be significantly different, hindering transferability

How to adapt to novel tasks?
Limitations

- Adaptation still requires fine-tuning of the whole model.
This increases the computational complexity.

Foundation Models

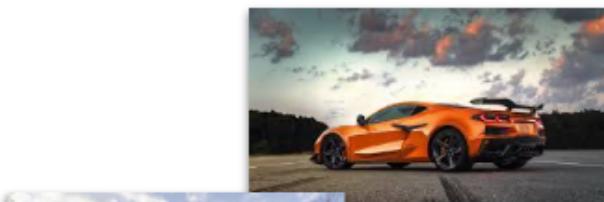
What are foundation models?



Revisit language-vision models (the main topic of this talk)

Main idea

Visual domain



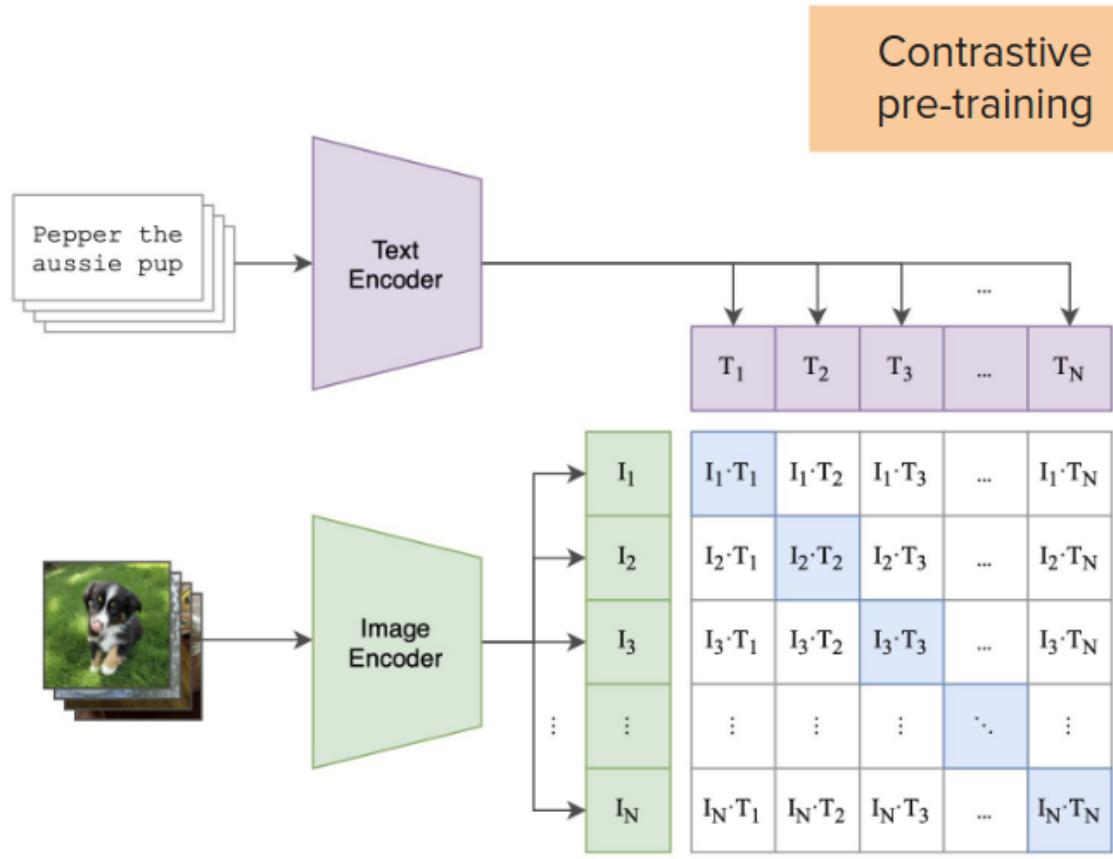
Language domain

"An orange sports car"

"A photo of a dog"

"A sketch of an aircraft"

Contrastive Language-Image Pre-training (CLIP)



$$\hat{y}_{i,j}^v = \frac{\exp(\mathbf{v}_i \cdot \mathbf{z}_j^\top / \tau)}{\sum_{n=1}^N \exp(\mathbf{v}_i \cdot \mathbf{z}_n^\top / \tau)}$$

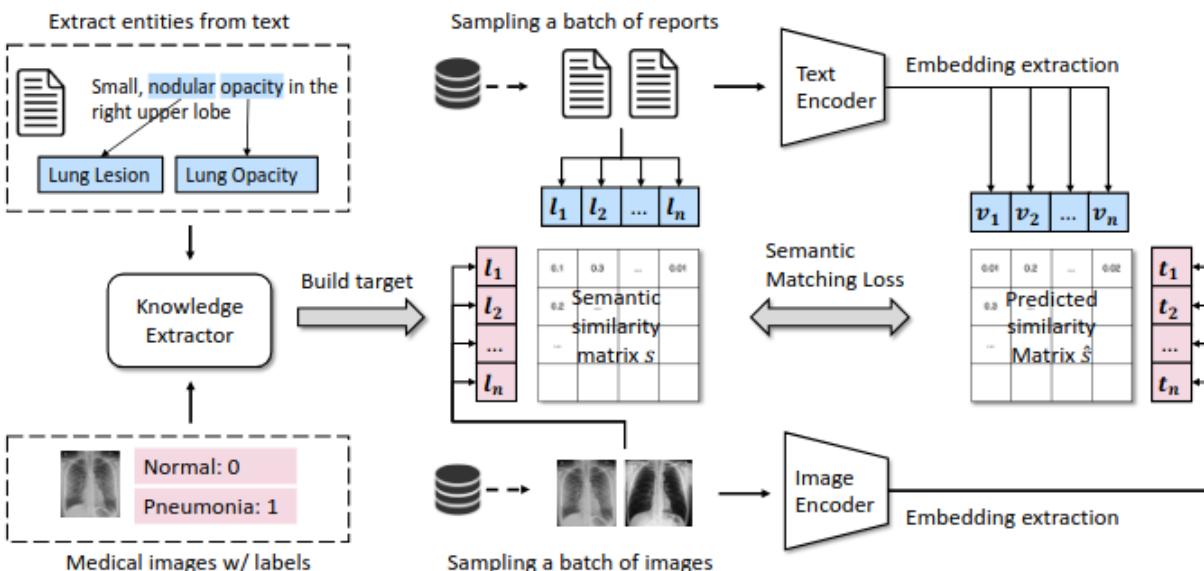
$$\hat{y}_{j,i}^t = \frac{\exp(\mathbf{v}_j \cdot \mathbf{z}_i^\top / \tau)}{\sum_{i=1}^N \exp(\mathbf{v}_j \cdot \mathbf{z}_i^\top / \tau)}$$

Ground truth for
 i -th element $\mathbf{y}_i = [0, 0, 1, \dots, 0]$

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^N (\mathcal{H}(\mathbf{y}_i, \hat{\mathbf{y}}_i^v) + \mathcal{H}(\mathbf{y}_i, \hat{\mathbf{y}}_i^t))$$

Medical applications: MedCLIP (Chest XRays)

MedCLIP: Contrastive Learning from Unpaired Medical Images and Text



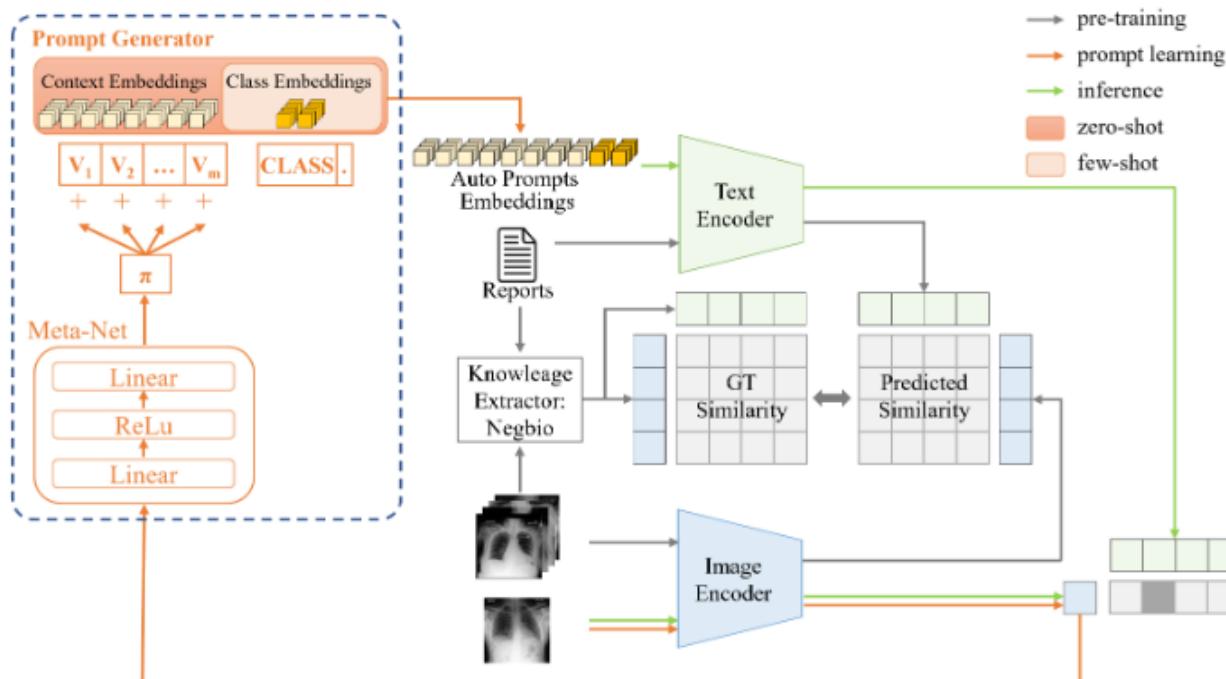
ACC(STD)	CheXpert-5x200	MIMIC-5x200	COVID	RSNA
CLIP	0.2016(0.01)	0.1918(0.01)	0.5069(0.03)	0.4989(0.01)
CLIP _{ENS}	0.2036(0.01)	0.2254(0.01)	0.5090(<0.01)	0.5055(0.01)
ConVIRT	0.4188(0.01)	0.4018(0.01)	0.5184(0.01)	0.4731(0.05)
ConVIRT _{ENS}	0.4224(0.02)	0.4010(0.02)	0.6647(0.05)	0.4647(0.08)
GLoRIA	0.4328(0.01)	0.3306(0.01)	0.7090(0.04)	0.5808(0.08)
GLoRIA _{ENS}	0.4210(0.03)	0.3382(0.01)	0.5702(0.06)	0.4752(0.06)
MedCLIP-ResNet	0.5476(0.01)	0.5022(0.02)	0.8472(<0.01)	0.7418(<0.01)
MedCLIP-ResNet _{ENS}	0.5712(<0.01)	0.5430(<0.01)	0.8369(<0.01)	0.7584(<0.01)
MedCLIP-ViT	0.5942(<0.01)	0.5006(<0.01)	0.8013(<0.01)	0.7447(0.01)
MedCLIP-ViT _{ENS}	0.5942(<0.01)	0.5024(<0.01)	0.7943(<0.01)	0.7682(<0.01)

Zero-shot classification task

Figure 3: The workflow of MedCLIP. The knowledge extraction module extracts medical entities from raw medical reports. Then, a semantic similarity matrix is built by comparing medical entities (from text) and raw labels (from images), which enables pairing arbitrary two separately sampled images and texts. The extracted image and text embeddings are paired to match the semantic similarity matrix.

Medical applications: MedPrompt (Chest XRays)

Exploring Low-Resource Medical Image Classification with Weakly Supervised Prompt Learning



MedPrompt architecture: MedClip +
Prompt learning module

Method	CheXpert	MIMIC-CXR	COVID	RSNA
CLIP [4]	0.2036	0.2254	0.5090	0.5055
ConVIRT [5]	0.4224	0.4010	0.6647	0.4647
GLoRIA [6]	0.4210	0.3382	0.5702	0.4752
MedCLIP-ViT [7]	0.5942	0.5024	0.7943	0.7682
MedPrompt-ViT (Ours)	0.6220	0.5720	0.7997	0.7284

Table 1: Performance of zero-shot image classification on four datasets. For models with manually designed prompts, we only report the results with prompt ensemble. Best performance are in bold.

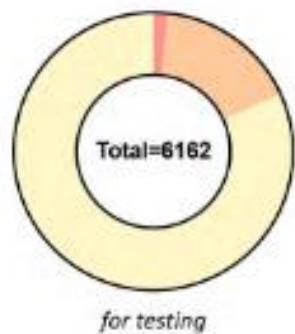
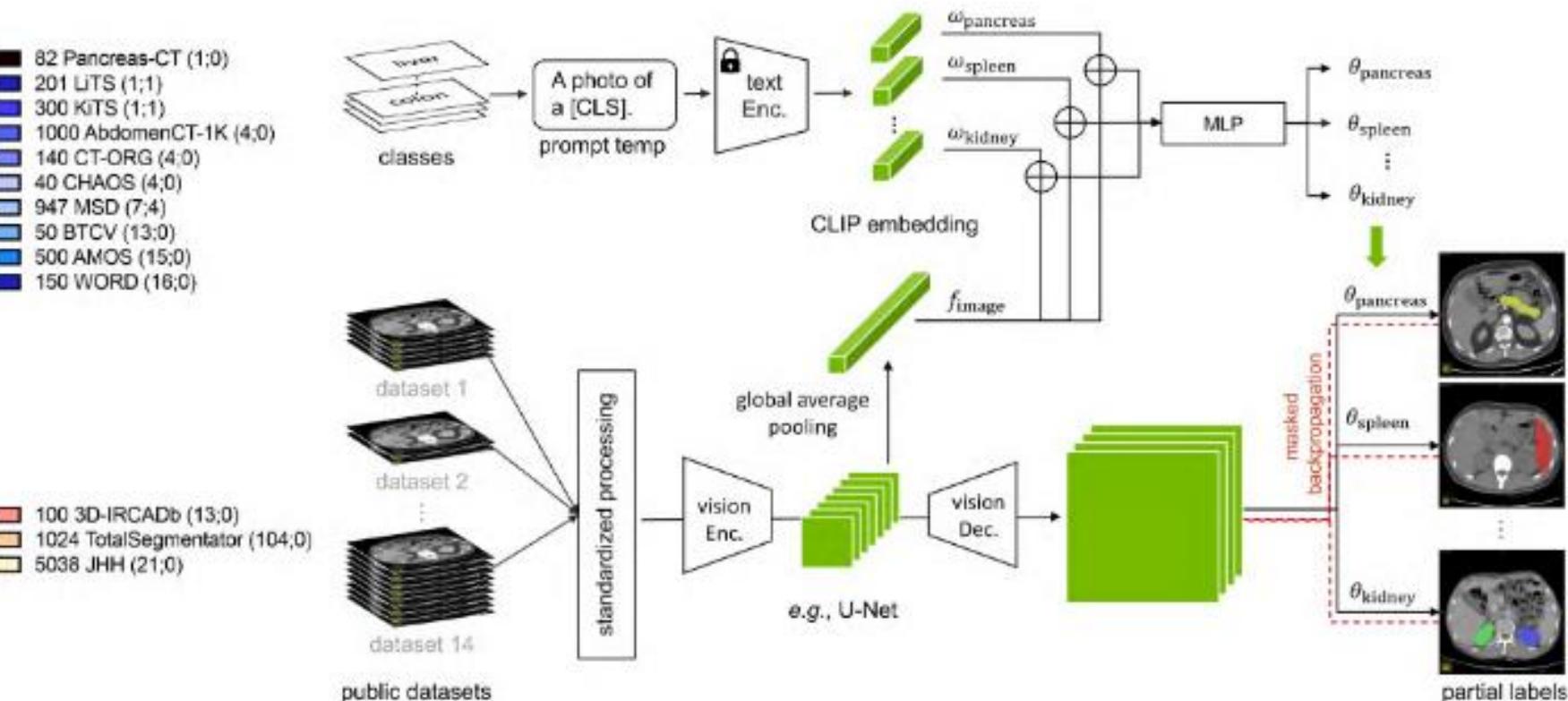
Method	CheXpert	MIMIC-CXR	COVID	RSNA
MedPrompt-ViT 0-shot	0.6220	0.5720	0.7997	0.7284
MedPrompt-ViT 1-shot	0.6315	0.5895	0.8020	0.7538
MedPrompt-ViT 2-shot	0.6360	0.5875	0.8290	0.7665
MedPrompt-ViT 4-shot	0.6400	0.5870	0.8627	0.7761
MedPrompt-ViT 8-shot	0.6320	0.5815	0.8693	0.7778
MedPrompt-ViT 16-shot	0.6500	0.6000	0.8700	0.8013
MedPrompt-ViT full-shot	0.6580	0.6160	0.9553	0.8304

Table 3: Performance of few-shot learning of our model on four datasets. Best performance are in bold.

Results for zero-shot and few-shots image classification

Medical applications in segmentation: CLIP Driven

CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection



Medical applications in segmentation: CLIP Driven

Main idea

Text branch

(generates text embedding for class k) \mathbf{w}_k

Visual branch-encoder

(generates visual embedding for image x) \mathbf{f}

Text-based controller MLP

(generates class parameters)

$$\theta_k = \text{MLP}(\mathbf{w}_k \oplus \mathbf{f})$$

$$\theta_k = \{\theta_{k_1}, \theta_{k_2}, \theta_{k_3}\}$$

Visual branch-decoder

(generates visual embedding for image x)

$$\mathbf{P}_k = \text{sigmoid}(((\mathbf{F} * \theta_{k_1}) * \theta_{k_2}) * \theta_{k_3})$$

It represents foreground
class k vs background

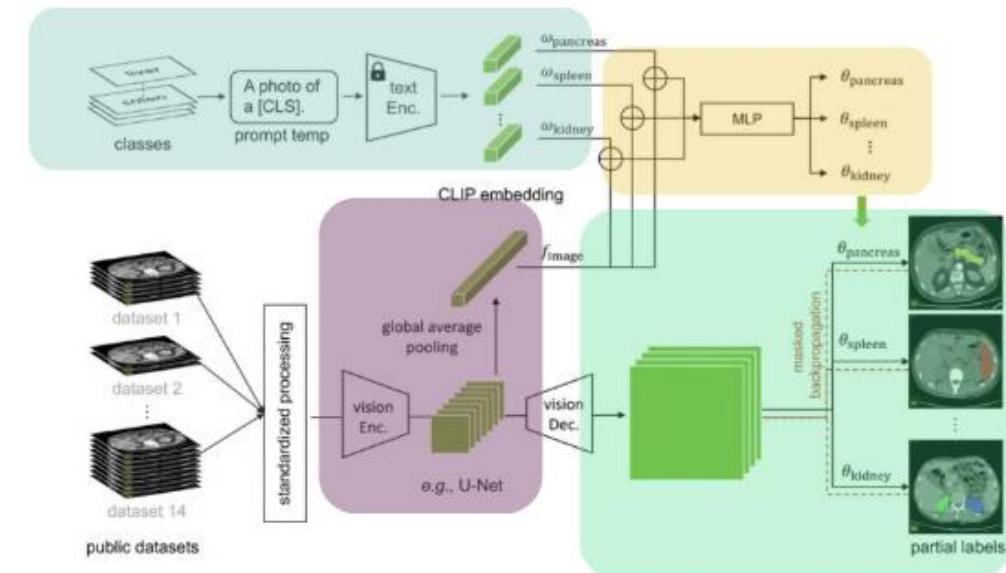
Training loss

Binary cross-entropy per class (and terms masked for those classes not present)

$$\mathcal{L} = \sum_{k=1}^K \mathbf{1}_{\{k \in y\}} \cdot \text{BCE}_k$$

168

Liu et al. CLIP Driven universal model for organ segmentation and tumor detection. ICCV'23



Medical applications in segmentation: CLIP Driven

Table 2. Leaderboard performance on MSD. The results are evaluated in the server on the MSD competition test dataset. All Dice and NSD metrics are obtained from the [MSD public leaderboard](#). The results of MRI-related tasks were generated by Swin UNETR [70].

Method	Task03 Liver						Task07 Pancreas					
	Dice1	Dice2	Avg.	NSD1	NSD2	Avg.	Dice1	Dice2	Avg.	NSD1	NSD2	Avg.
Kim <i>et al.</i> [34]	94.25	72.96	83.61	96.76	88.58	92.67	80.61	51.75	66.18	95.83	73.09	84.46
Trans VW [22]	95.18	76.90	86.04	97.86	92.03	94.95	81.42	51.08	66.25	96.07	70.13	83.10
C2FNAS[89]	94.98	72.89	83.94	98.38	89.15	93.77	80.76	54.41	67.59	96.16	75.58	85.87
Models Gen. [100]	95.72	77.50	86.61	98.48	91.92	95.20	81.36	50.36	65.86	96.16	70.02	83.09
nnUNet [30]	95.75	75.97	85.86	98.55	90.65	94.60	81.64	52.78	67.21	96.14	71.47	83.81
DiNTS [24]	95.35	74.62	84.99	98.69	91.02	94.86	81.02	55.35	68.19	96.26	75.90	86.08
Swin UNETR [70]	95.35	75.68	85.52	98.34	91.59	94.97	81.85	58.21	70.71	96.57	79.10	87.84
Universal Model	95.42	79.35	87.39	98.18	93.42	95.80	82.84	62.33	72.59	96.65	82.86	89.76
Method	Task08 Hepatic Vessel						Task06 Lung					
	Dice1	Dice2	Avg.	NSD1	NSD2	Avg.	Dice1	NSD1	Dice1	NSD1	Dice1	NSD1
Kim <i>et al.</i> [34]	62.34	68.63	65.49	83.22	78.43	80.83	63.10	62.51	91.92	94.83	49.32	62.21
Trans VW [22]	65.80	71.44	68.62	84.01	80.15	82.08	74.54	76.22	97.35	99.87	51.47	60.53
C2FNAS[89]	64.30	71.00	67.65	83.78	80.66	82.22	70.44	72.22	96.28	97.66	58.90	72.56
Models Gen. [100]	65.80	71.44	68.62	84.01	80.15	82.08	74.54	76.22	97.35	99.87	51.47	60.53
nnUNet [30]	66.46	71.78	69.12	84.43	80.72	82.58	73.97	76.02	97.43	99.89	58.33	68.43
DiNTS [24]	64.50	71.76	68.13	83.98	81.03	82.51	74.75	77.02	96.98	99.83	59.21	70.34
Swin UNETR [70]	65.69	72.20	68.95	84.83	81.62	83.23	76.60	77.40	96.99	99.84	59.45	70.89
Universal Model	67.15	75.86	71.51	84.84	85.23	85.04	80.01	81.25	97.27	99.87	63.14	75.15

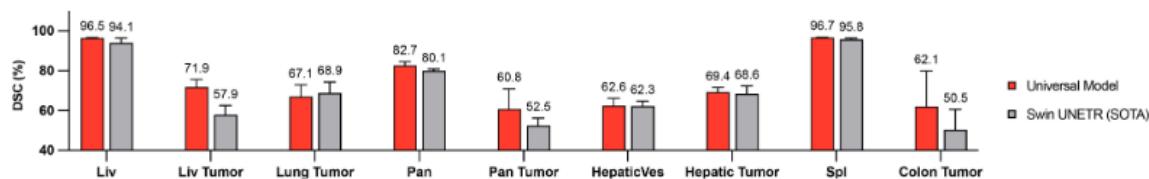


Figure 3. Benchmark on MSD validation dataset. We compare Universal Model with Swin UNETR [70] (previously ranked first on the MSD leaderboard) on 5-fold cross-validation of the MSD dataset. Universal Model achieves overall better segmentation performance and offers substantial improvement in the tasks of segmenting liver tumors (+14%), pancreatic tumors (+8%), and colon tumors (+11%).

Table 3. 5-fold cross-validation results on BTCV. For a fair comparison, we did not use model ensemble during the evaluation. All experiments are under the same data splits, computing resources, and testing conditions. Universal Model achieves the overall best performance, yielding at least +3.9% DSC improvement over the state-of-the-art method.

Methods	Spl	RKid	LKid	Gall	Eso	Liv	Sto	Aor	IVC	Veins	Pan	AG	Avg.
RandPatch [69]	95.82	88.52	90.14	68.31	75.01	96.48	82.93	88.96	82.49	73.54	75.48	66.09	80.76
TransBTS [30]	94.59	89.23	90.47	68.50	75.59	96.14	83.72	88.85	82.28	74.25	75.12	66.74	80.94
nnFormer [94]	94.51	88.49	93.39	65.51	74.49	96.10	83.83	88.91	80.58	75.94	77.71	68.19	81.22
UNETR [23]	94.91	92.10	93.12	76.98	74.01	96.17	79.98	89.74	81.20	75.05	80.12	62.60	81.43
nnU-Net [30]	95.92	88.28	92.62	66.58	75.71	96.49	86.05	88.33	82.72	78.31	79.17	67.99	82.01
Swin UNETR [70]	95.44	93.38	93.40	77.12	74.14	96.39	80.12	90.02	82.93	75.08	81.02	64.98	82.06
Universal Model	95.82	94.28	94.11	79.52	76.55	97.05	92.59	91.63	86.00	77.54	83.17	70.52	86.13



Figure 5. Pancreatic tumor detection. Qualitative visualizations of the proposed Universal Model and five competitive baseline methods. We review the detection results of tumors from smaller to larger sizes (Rows 1–3). When it comes to a CT scan without tumor from other hospitals, the Universal Model generalizes well in organ segmentation and does not generate many false positives of tumors (Row 4; §4.2). The visualization of tumor detection in other organs (e.g., liver tumors and kidney tumors) can be found in Appendix Figures 10–11.

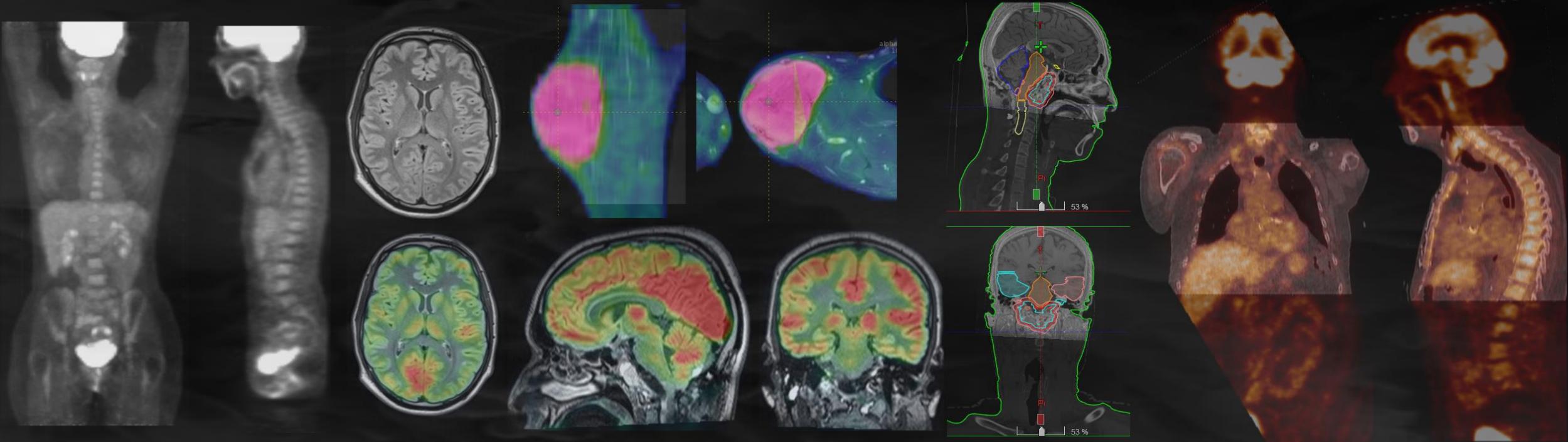
Medical Segmentation Decathlon results comparison

Beyond the Cranial Vault (BTCV) Segmentation Challenge results comparison

Paul Steinmetz - 02/10/2024

Développement de méthodes pour la création de modèles d'IA
performants et robustes en imagerie médicale

Thèse débutée le 08/01/2024 – dans le cadre du programme AIDReAM

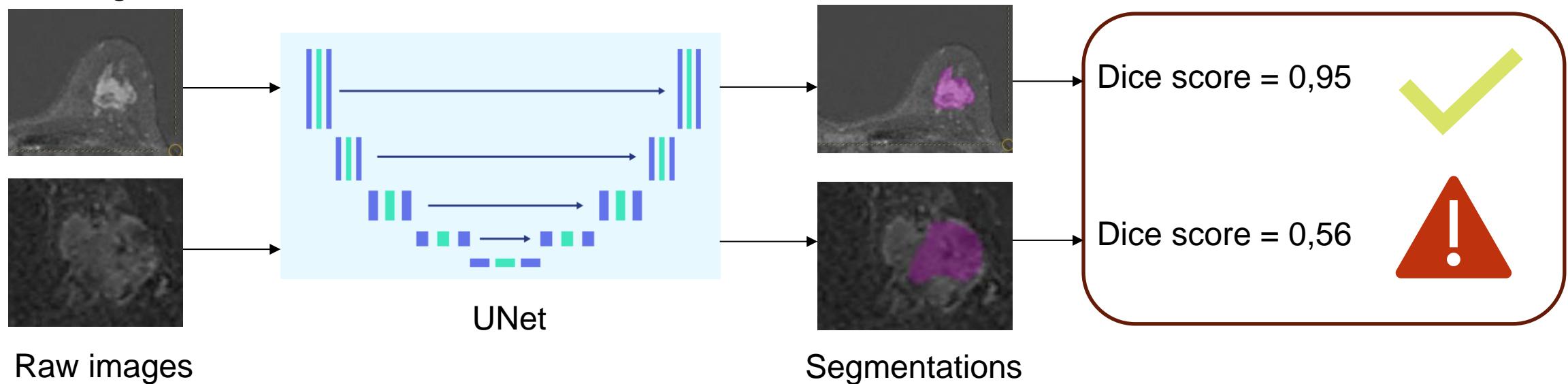


Plan

- Context
- Use case: BI-RADS classification:
 - Data pre-processing
 - Training strategy and model
 - Training results
 - External evaluation results
- Uncertainty Quantification:
 - Results
 - Next steps

Context

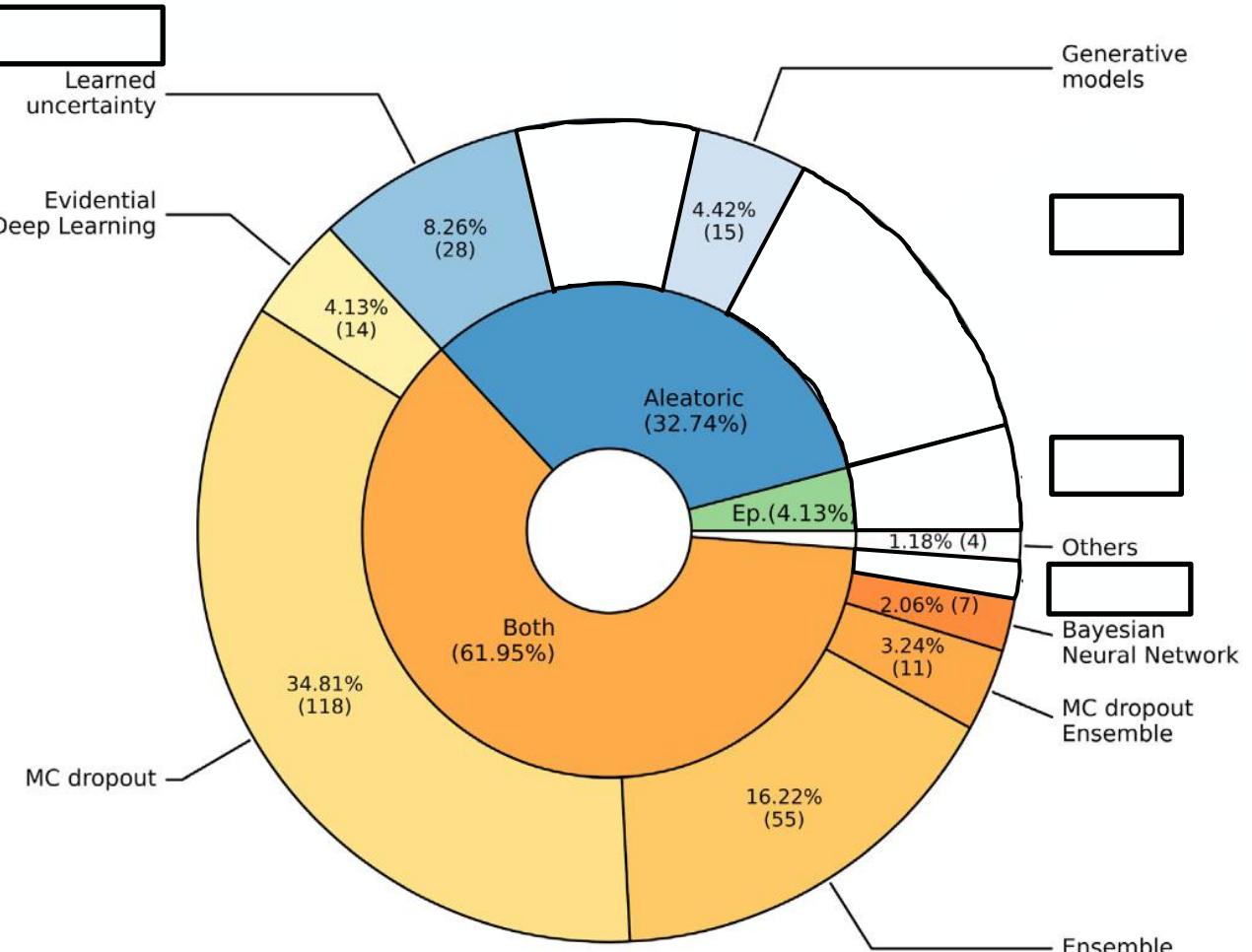
- Lack of robustness and adaptability of models to domain shift + inability to identify failure cases
→ main bottleneck for adoption in clinical practice
- Example: segmentation of breast MRI tumors for prognostic evaluation. High performance models but in case of failure → incorrect prognosis, may lead to inappropriate patient management



- Uncertainty quantification can help identify cases at risk of poor performance, that need to be reviewed

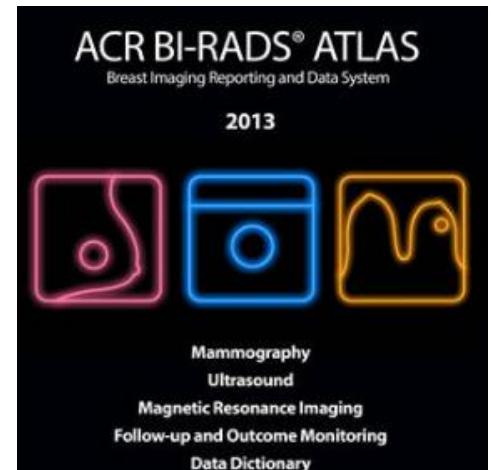
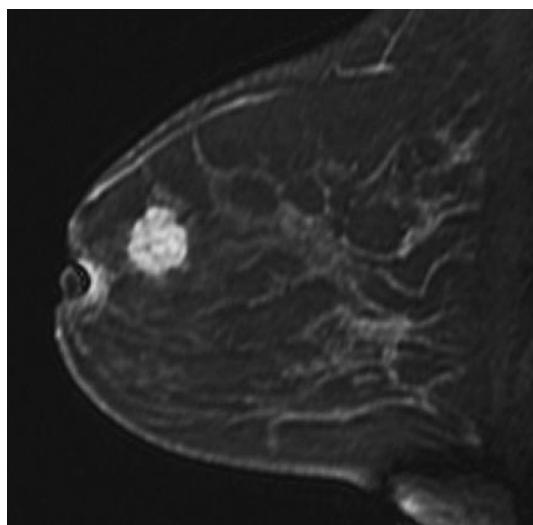
Uncertainty Quantification (UQ)

- Multiple approaches described in the literature¹
- Often directly integrated in architecture / during training (intrinsic methods) → **not easily generalizable**
- Post-hoc methods: applied after model training, with no knowledge on model architecture or weights
- **Goal of thesis:** develop post-hoc UQ methods as a python library and test it on multiple scenarios (classification, segmentation, regression, with/without access to training data...).

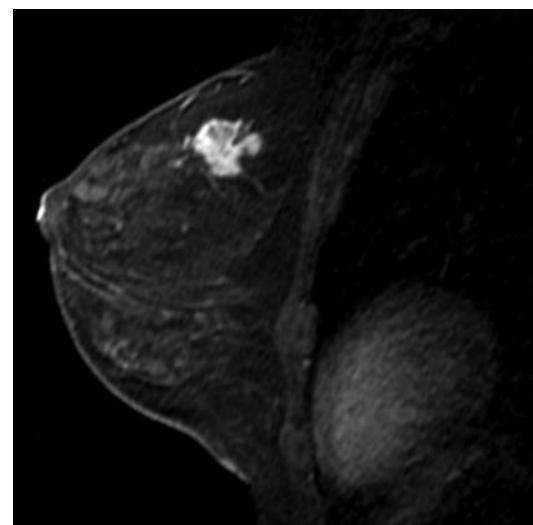


Use case model – BIRADS classification

- Breast Imaging Reporting and Data System (BI-RADS) : Atlas standardizing breast imaging terminology + structure assessment (shape, margin) and classification system in X-Rays, US and MRI
- Shape criteria shown to be associated with complete response to neoadjuvant chemotherapy¹
- 103 MRI sequences for training/evaluation + 31 external test cases
- CNN to predict shape of tumors



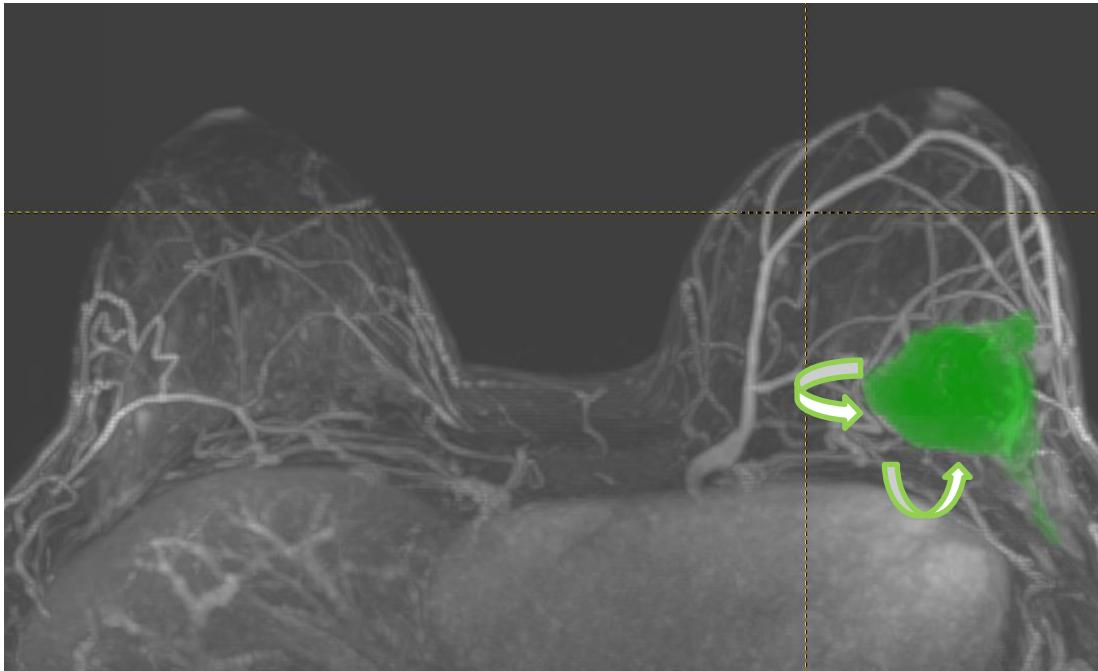
Round shape



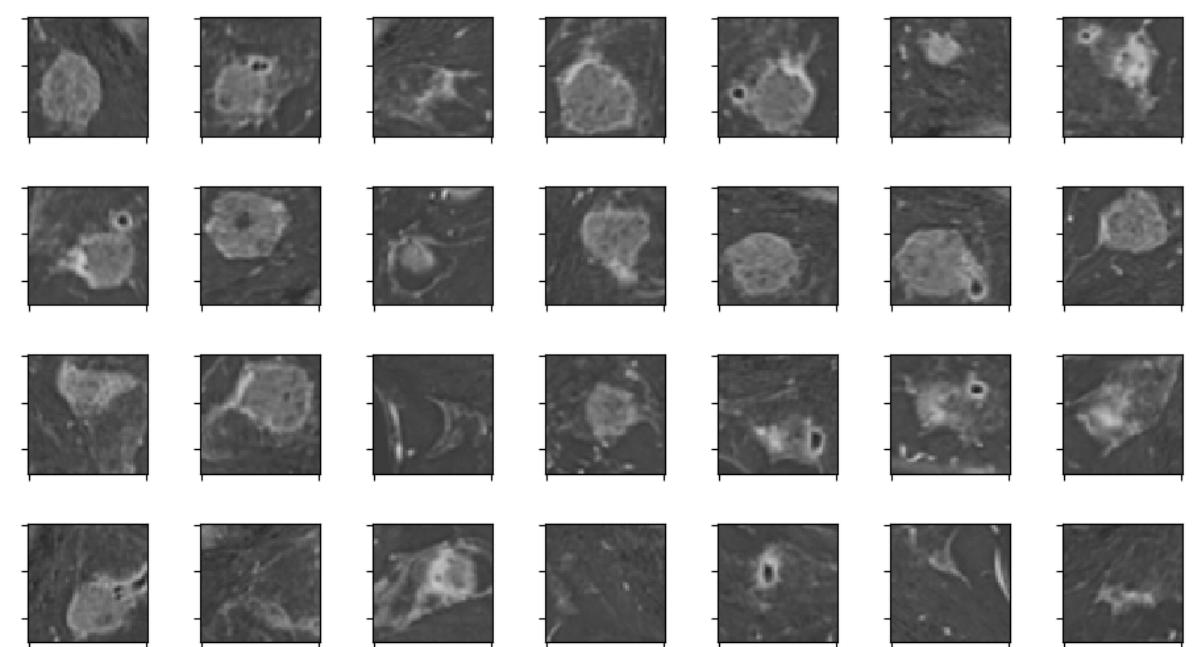
Irregular shape

Training with natural data augmentation

- Problem: small number of patients (initial DB n=103) + imbalanced classes (1:4) --> data augmentation needed
- Proposal: from 3D to 2D --> use of MRI slices + 3D random rotations of the tumors

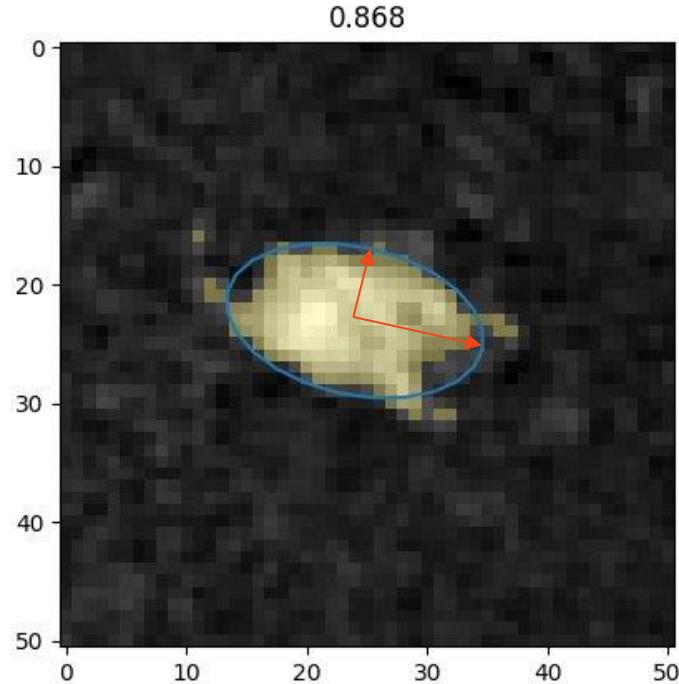


Axial MIP with
segmented tumor

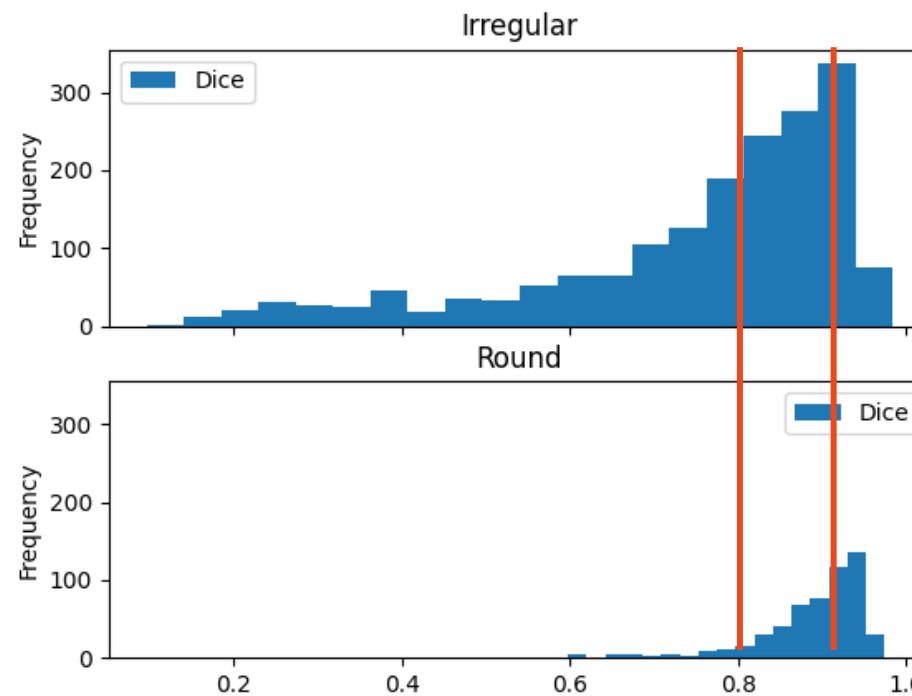


Train: from 103 to
4312 images

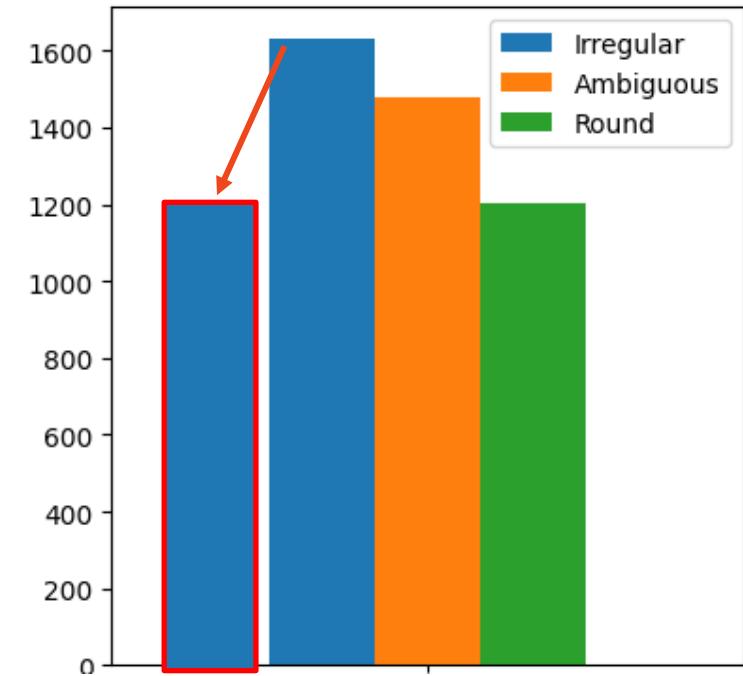
2D slices auto-labelling



Dice computation between tumor 2D mask & ROI-enclosing ellipsoid (from PCA of mask)



Slices dice scores distributions for « Round »-labelled tumors and for « Irregular »-labelled tumors



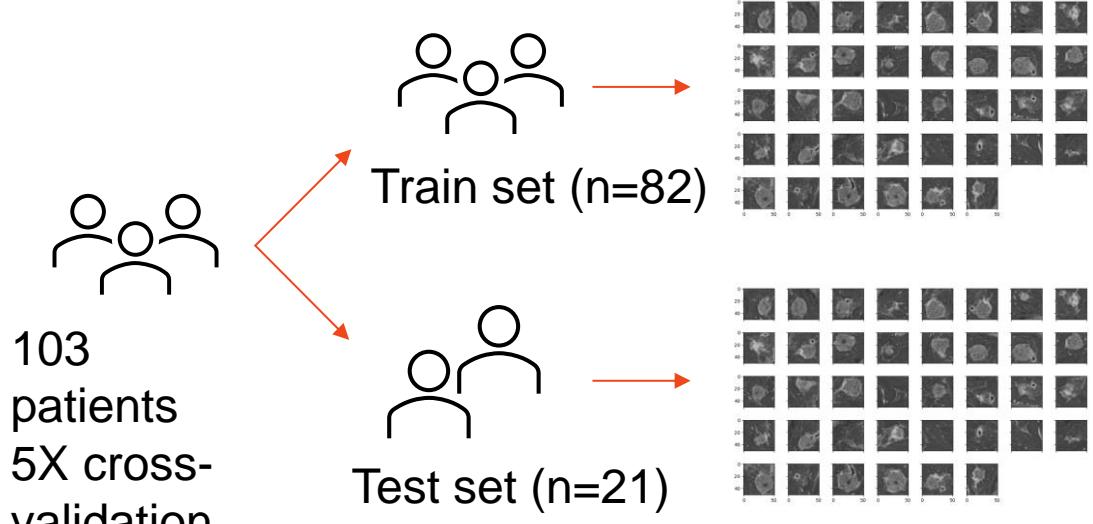
Final repartition (downsampling irregular class to 1200 to balance)

Problem: “round”(“irregular”)-labelled tumors \neq all slices round (irregular)

Proposal: 3-class distribution, dice-based: “Irregular” ($\text{dice} < 0.8$) | “Ambiguous” ($0.8 \leq \text{dice} < 0.9$) | “Round” ($\text{dice} > 0.9$)

External evaluation DB (domain shift evaluation): from 31 to 1349 images

Training: Data & CNN Architecture

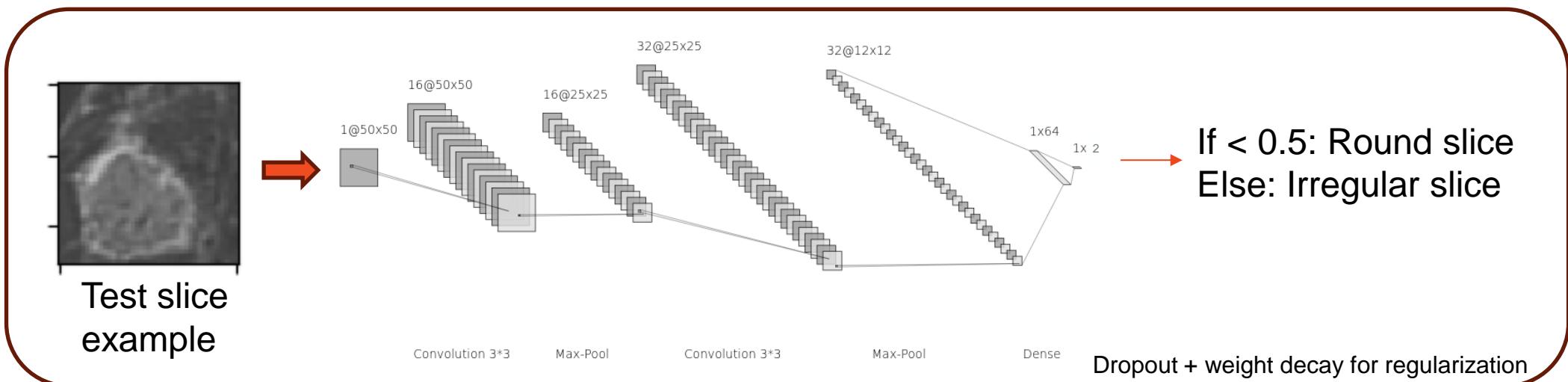


Folds	1	2	3	4	5
Round	957	1041	978	988	848
Irregular	970	889	953	979	1009

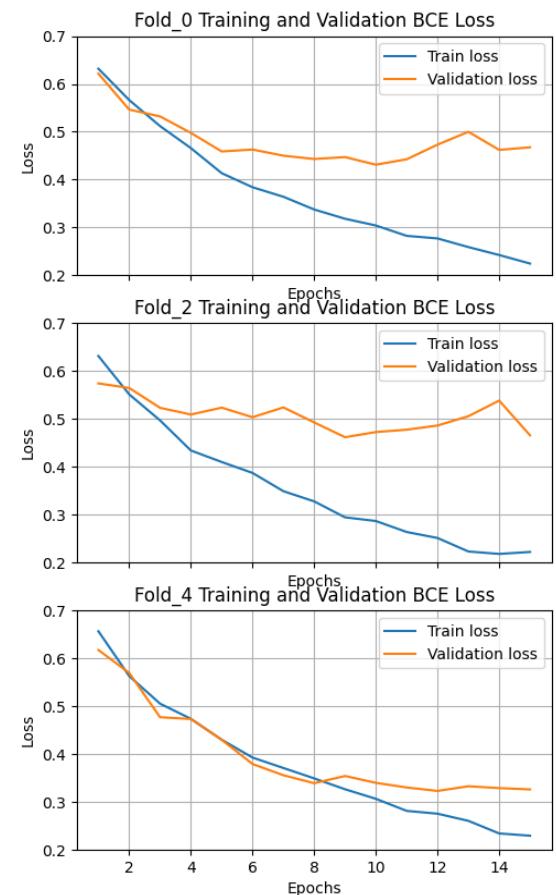
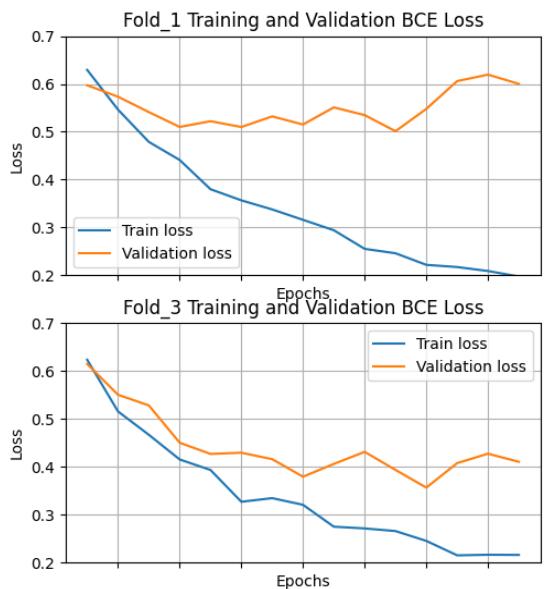
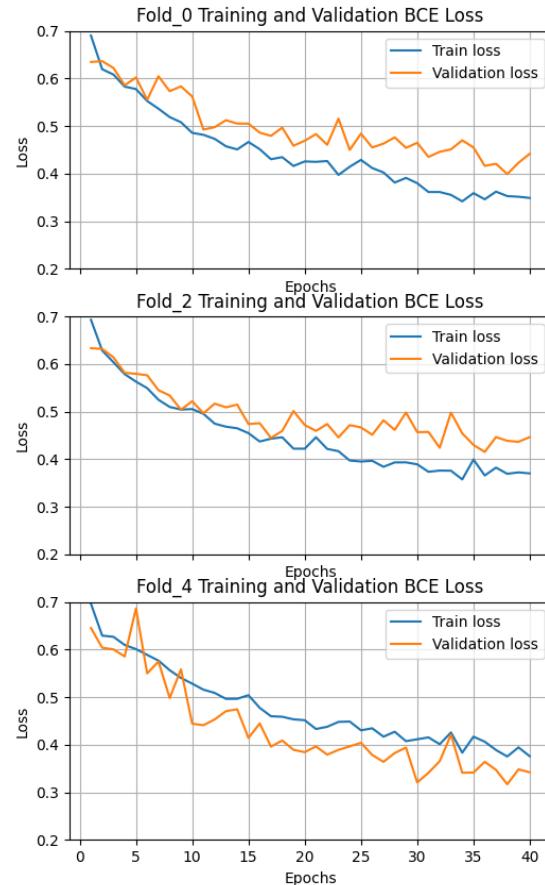
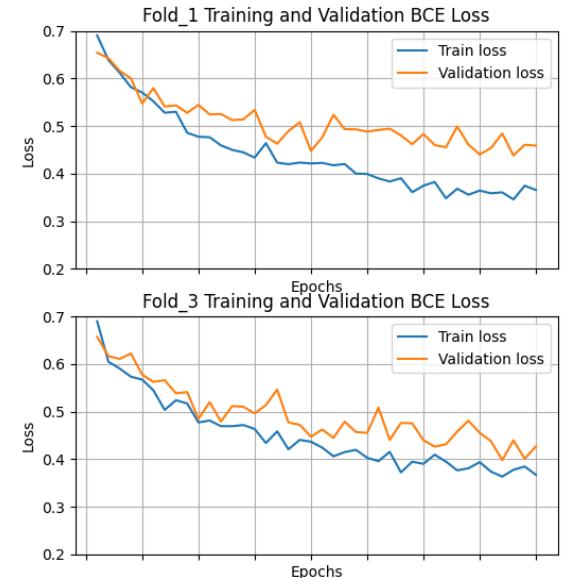
	1	2	3	4	5
Round	246	162	225	215	191
Irregular	230	162	247	221	191

Downsampling when imbalance > 2:3

Training with
and without
random data
augmentation

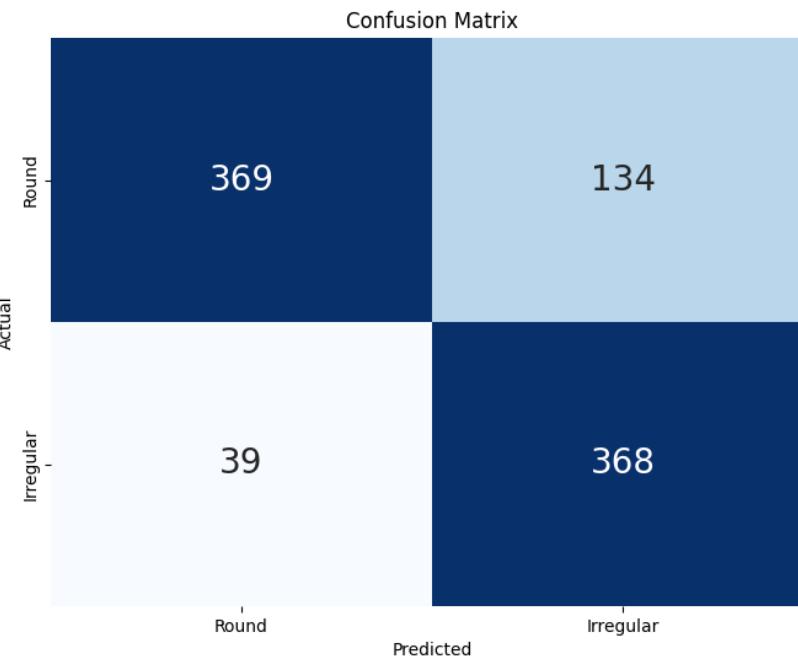
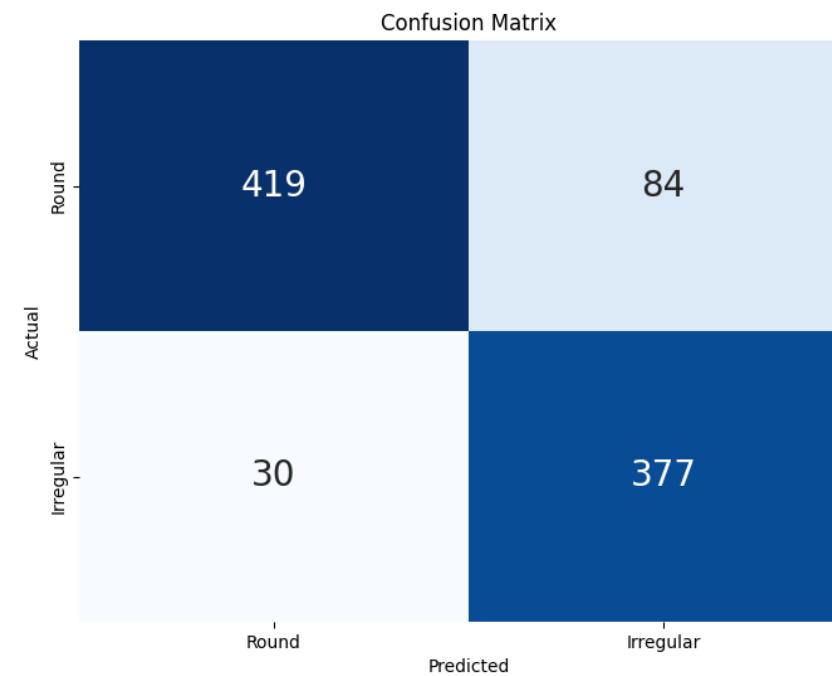


Training results from cross validation



- Overall good performance
- No important differences with and without data augmentation at training:
 - w/o data augmentation: mean (SD) **Roc AUC = 0.89 (0.03)**
 - w data augmentation: mean (SD) **Roc AUC = 0.88 (0.02)**

External evaluation DB



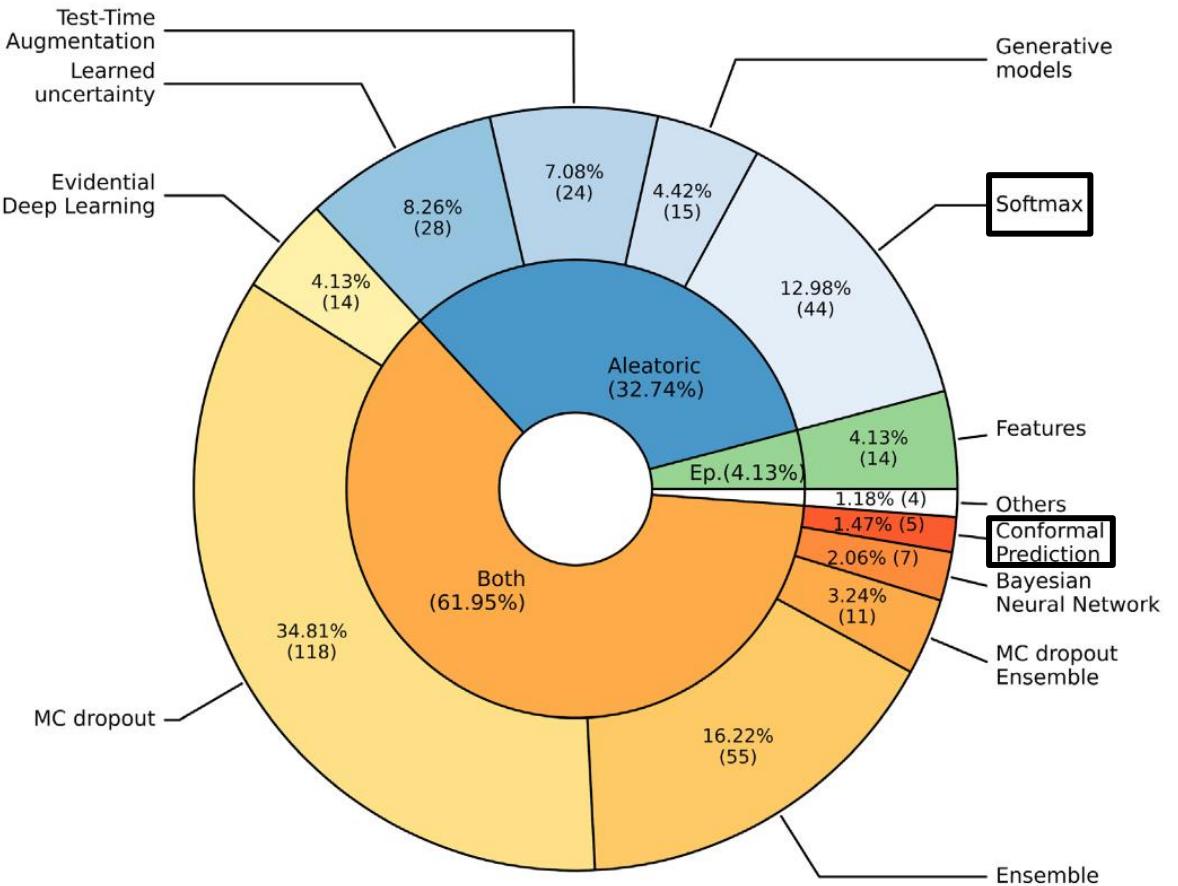
	Without data augmentation	With data augmentation
Accuracy	0.81	0.87
Roc AUC	0.86	0.93
Sensitivity	0.90	0.93
Specificity	0.73	0.83

Data augmentation increases robustness and performance on new unseen data

Methods for Uncertainty Quantification

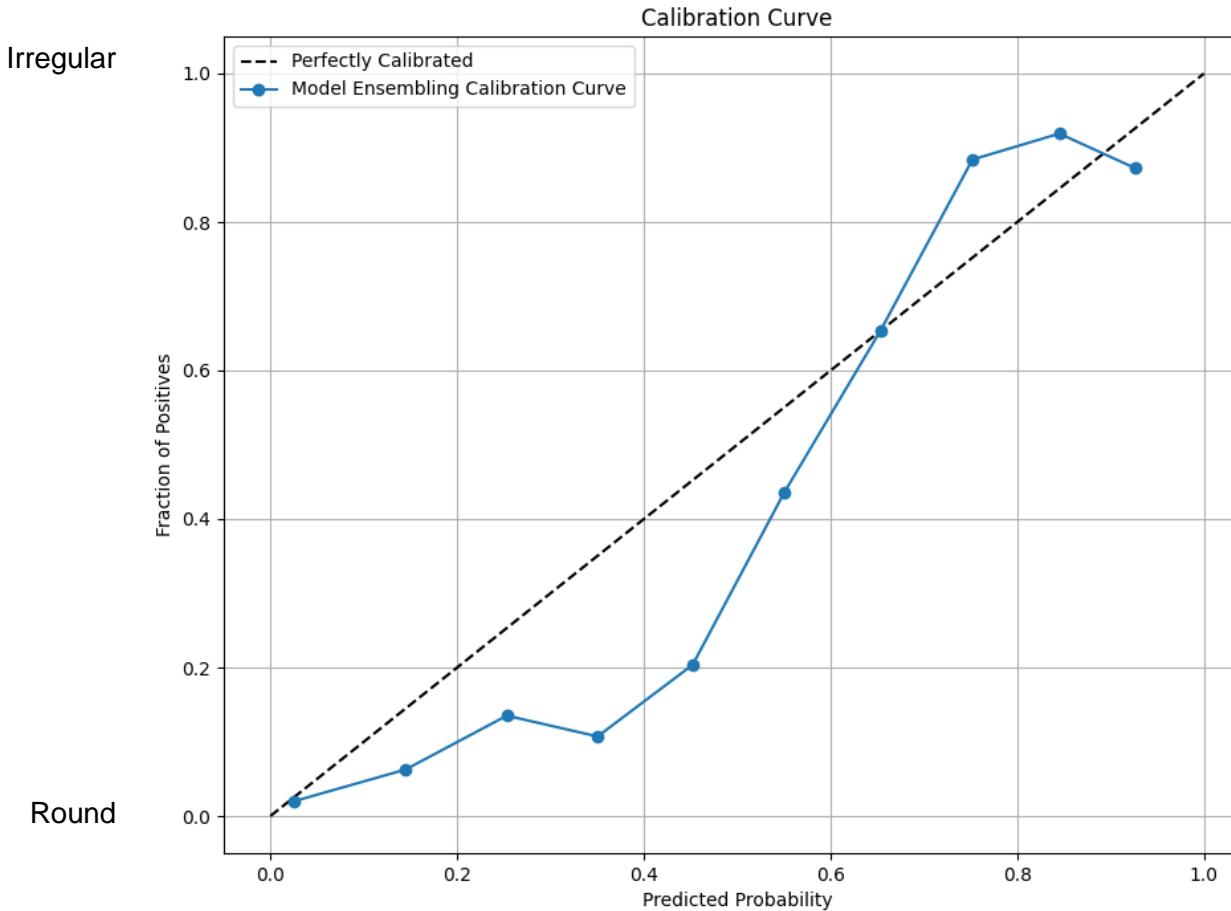
Needed:

- Trained model (w/wo data augmentation)
- Annotated test set



Uncertainty Quantification: Model calibration – Softmax

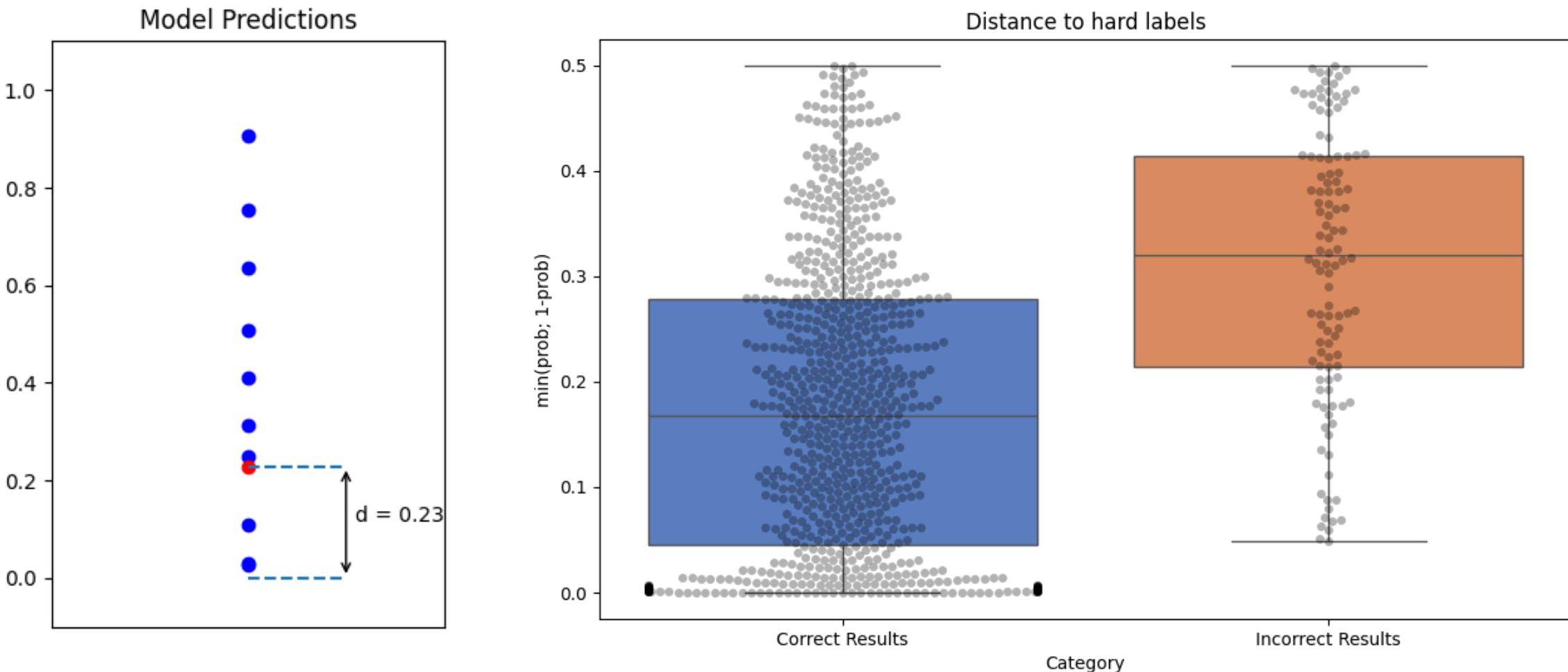
- Is the output probability correlated with the frequency of correct predictions ?



For predictions < 0.5 : below $x=y$ curve \rightarrow underconfident | above \rightarrow overconfident
 > 0.5 : above $x=y$ curve \rightarrow underconfident | below \rightarrow overconfident

Uncertainty Quantification: Model calibration – Softmax

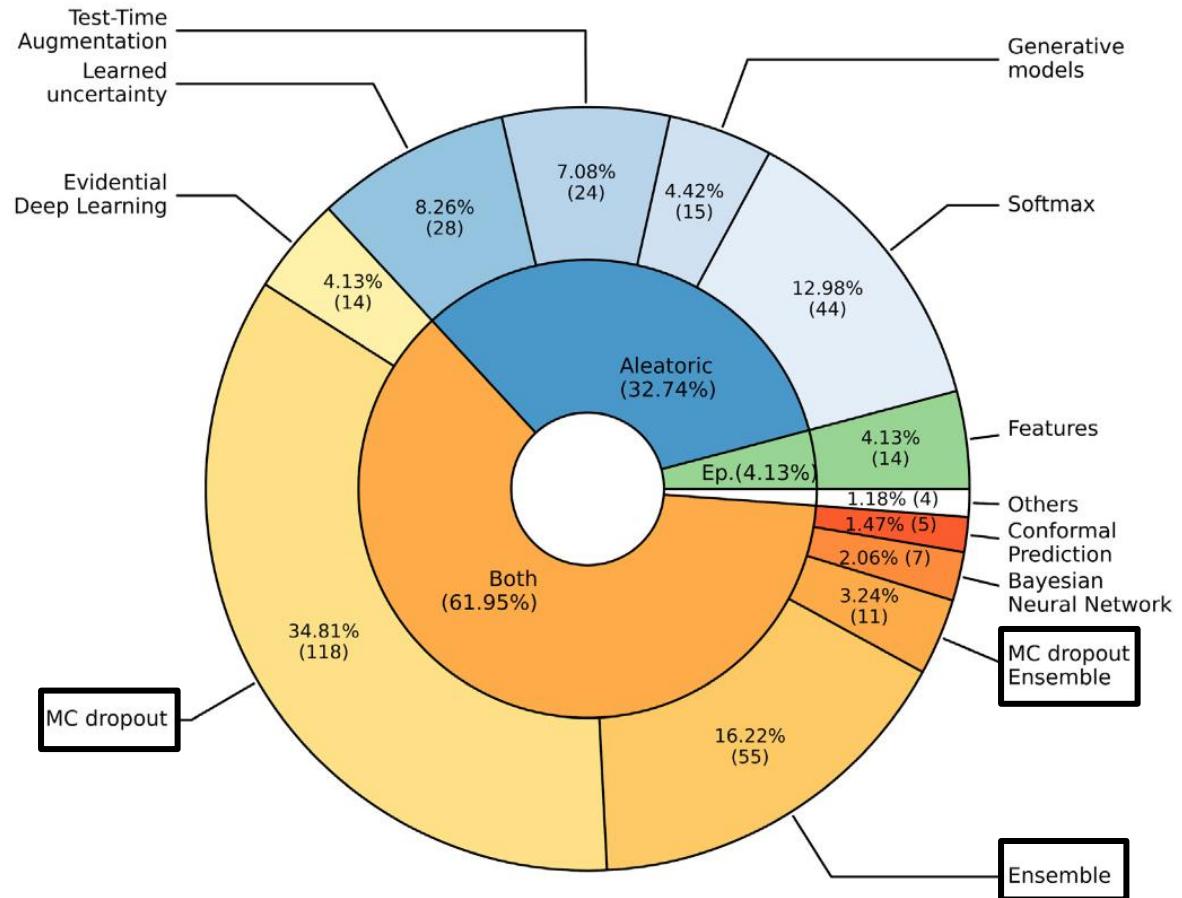
- If model correctly calibrated: predicted probability distance to hard labels (round: 0, irregular: 1) as a proxy for UQ



Methods for Uncertainty Quantification

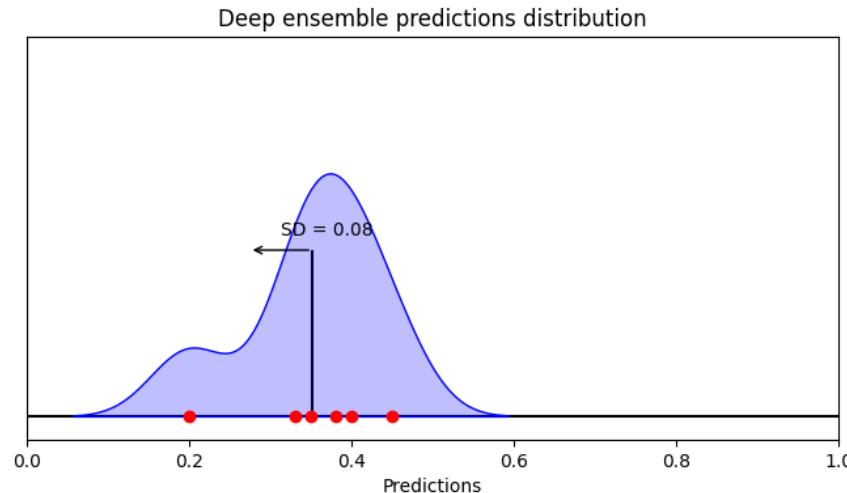
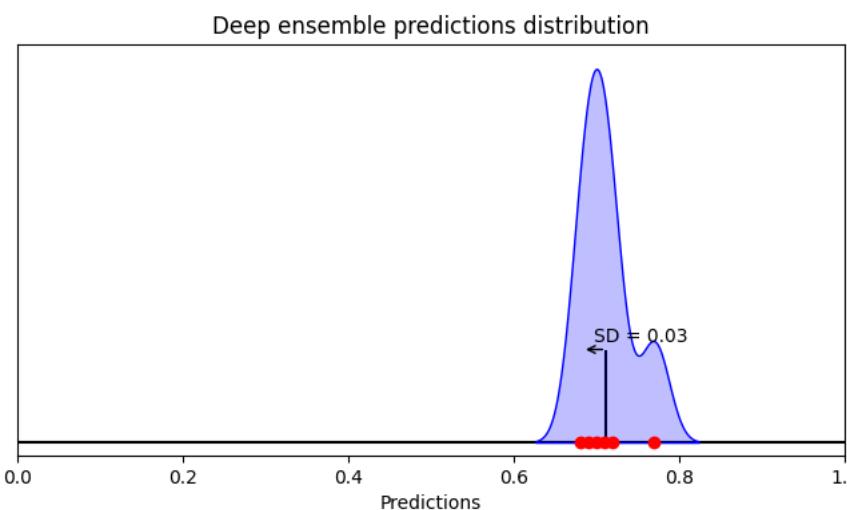
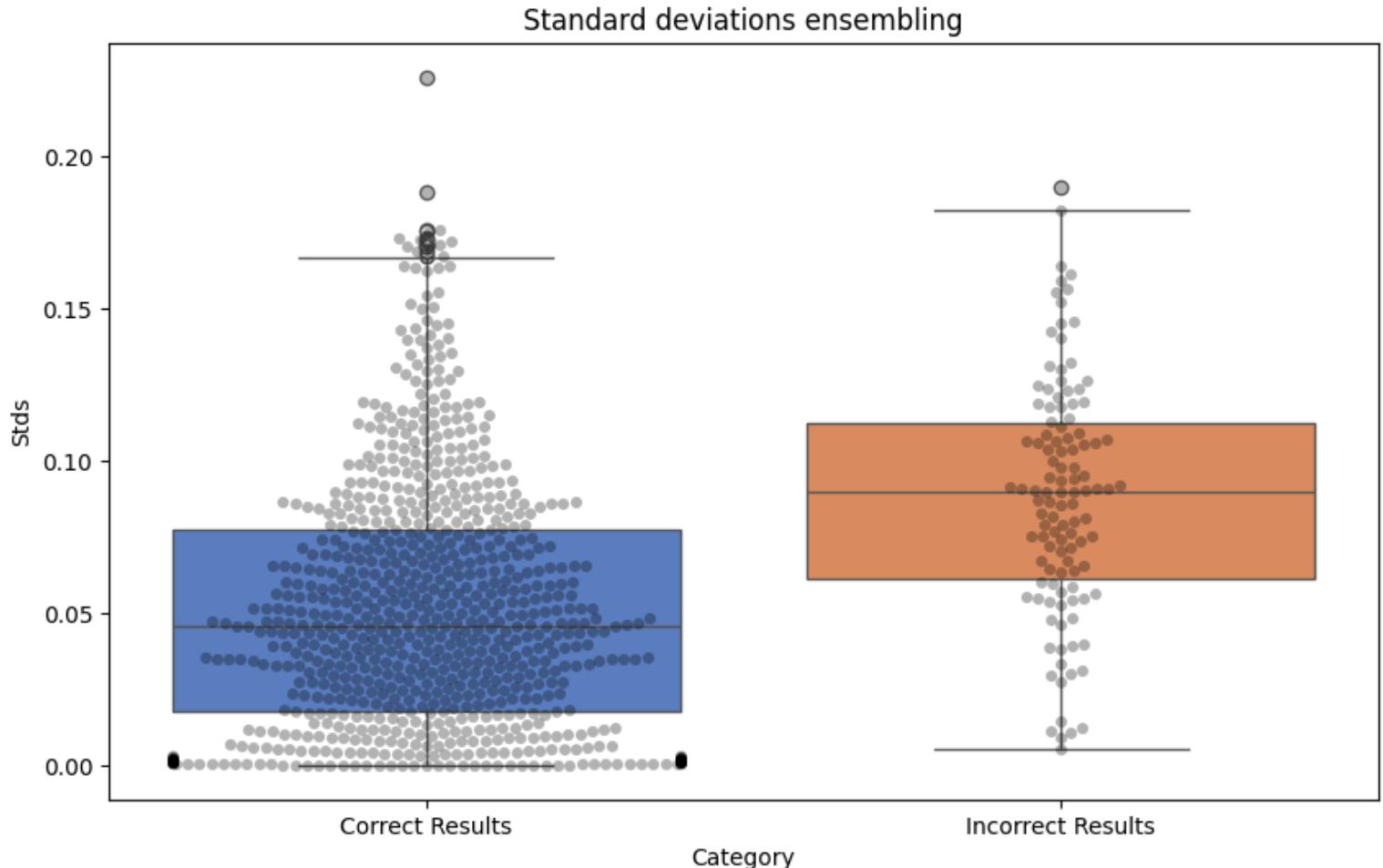
Needed:

- Trained model (w/wo data augmentation)
- Sub-ensembles results if ensembling approaches used in training



Uncertainty Quantification: Variability of deep ensemble results

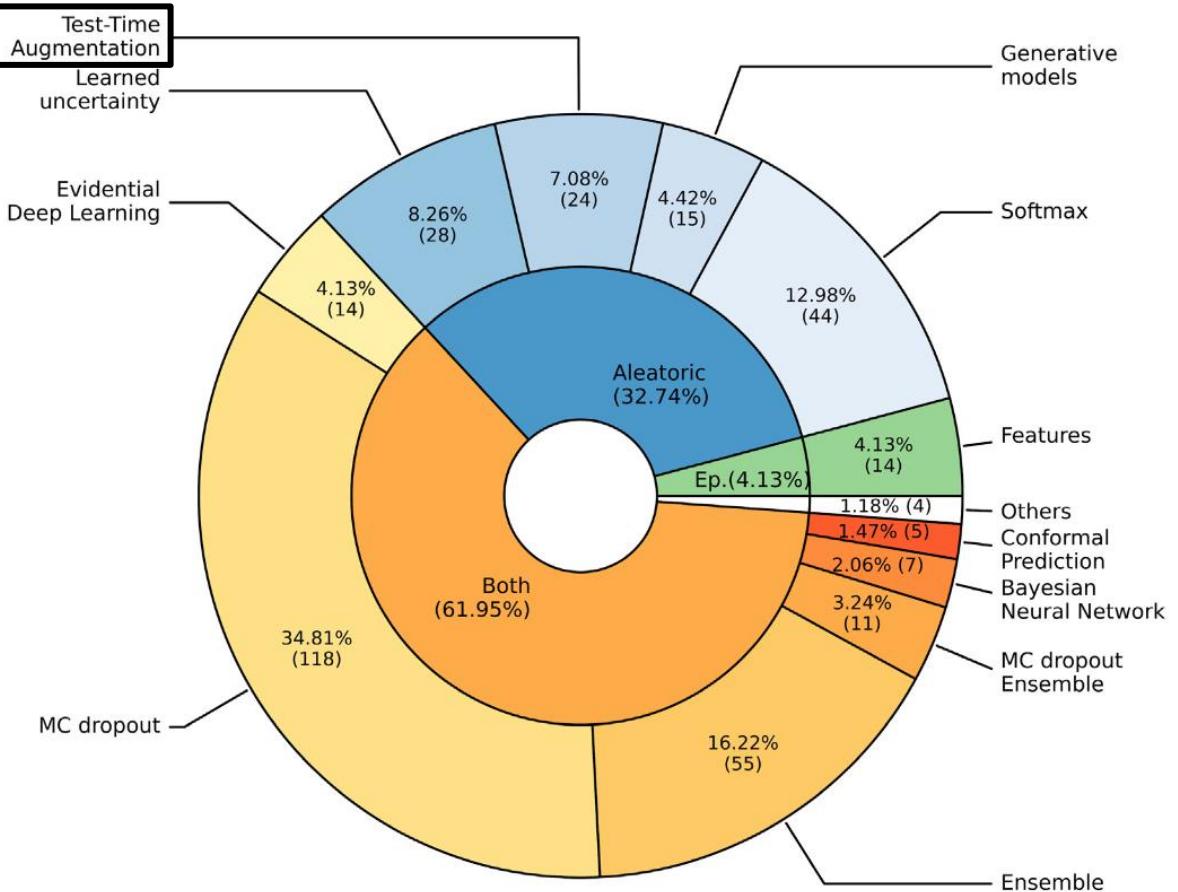
- Variability of ensembling prediction to quantify uncertainty



Methods for Uncertainty Quantification

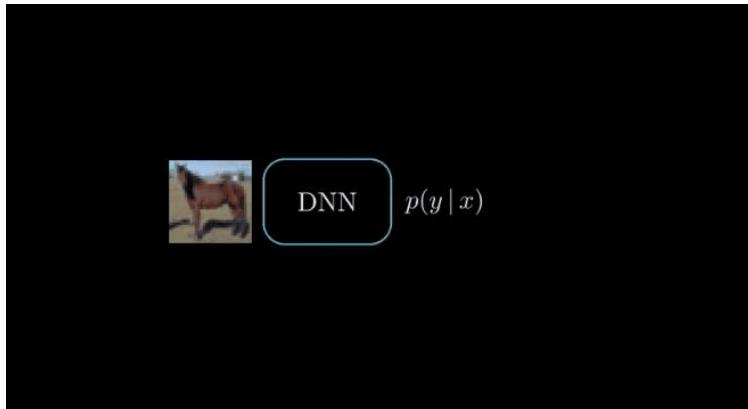
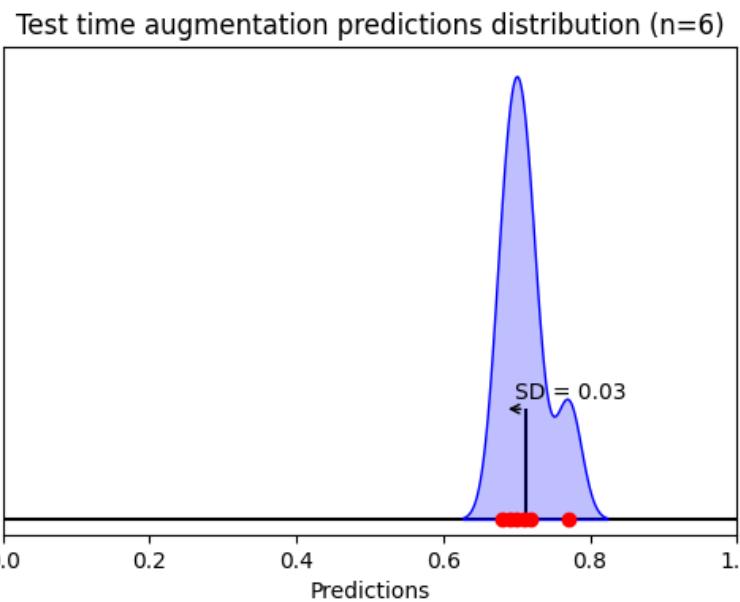
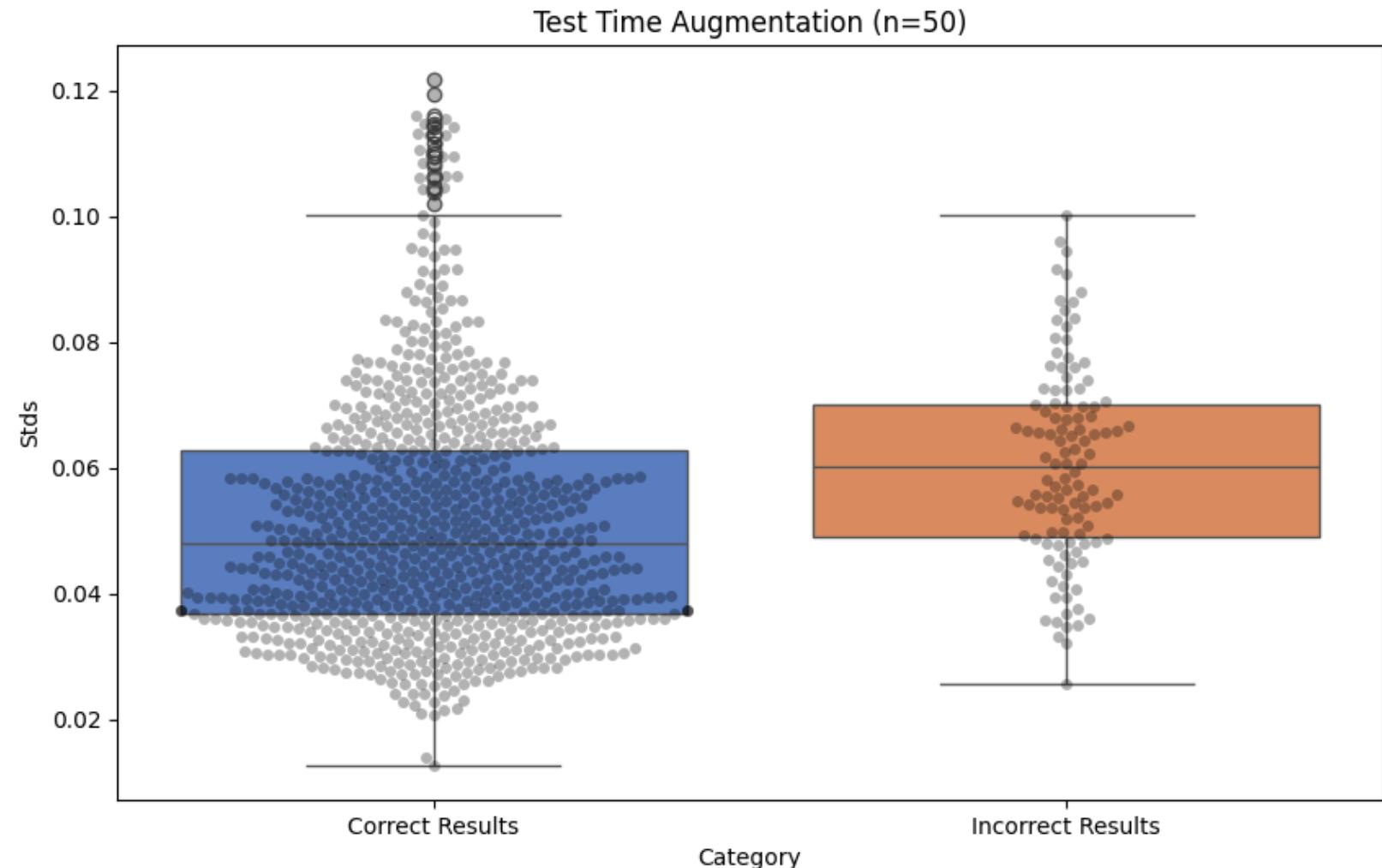
Needed:

- Trained model (w/wo data augmentation)
- Annotated test set (if augmentation policies search)



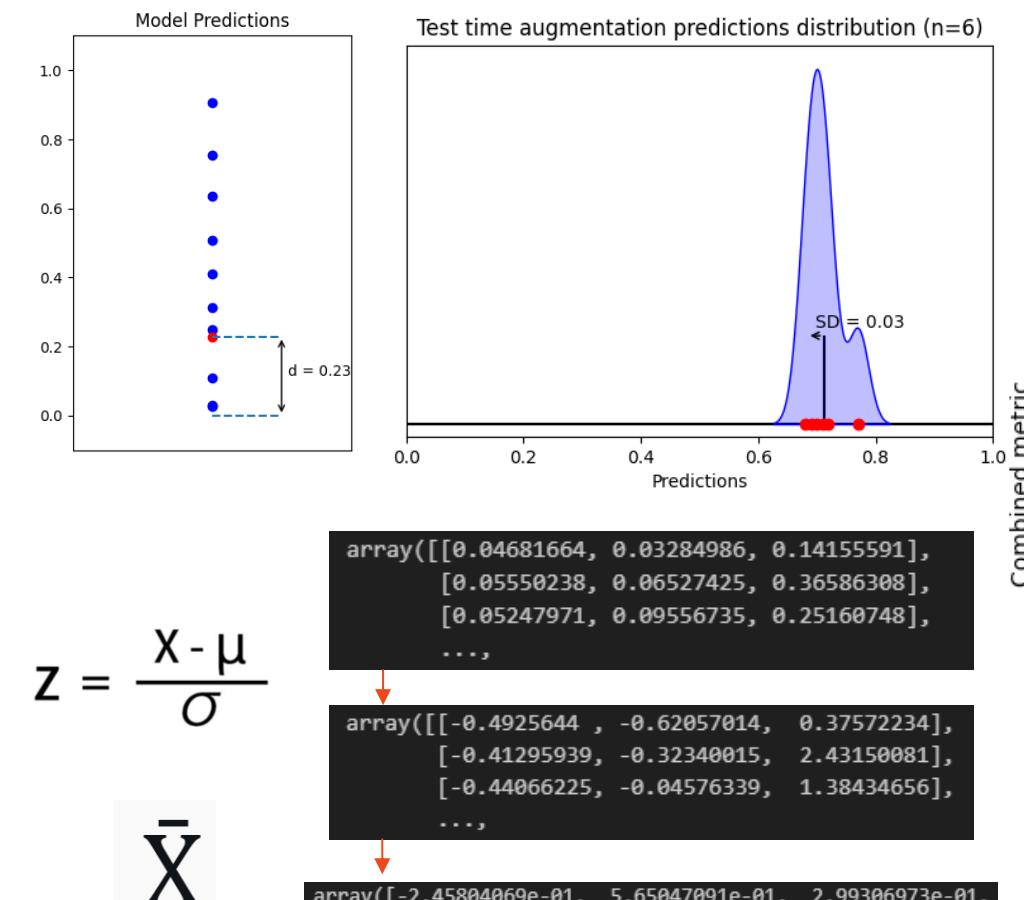
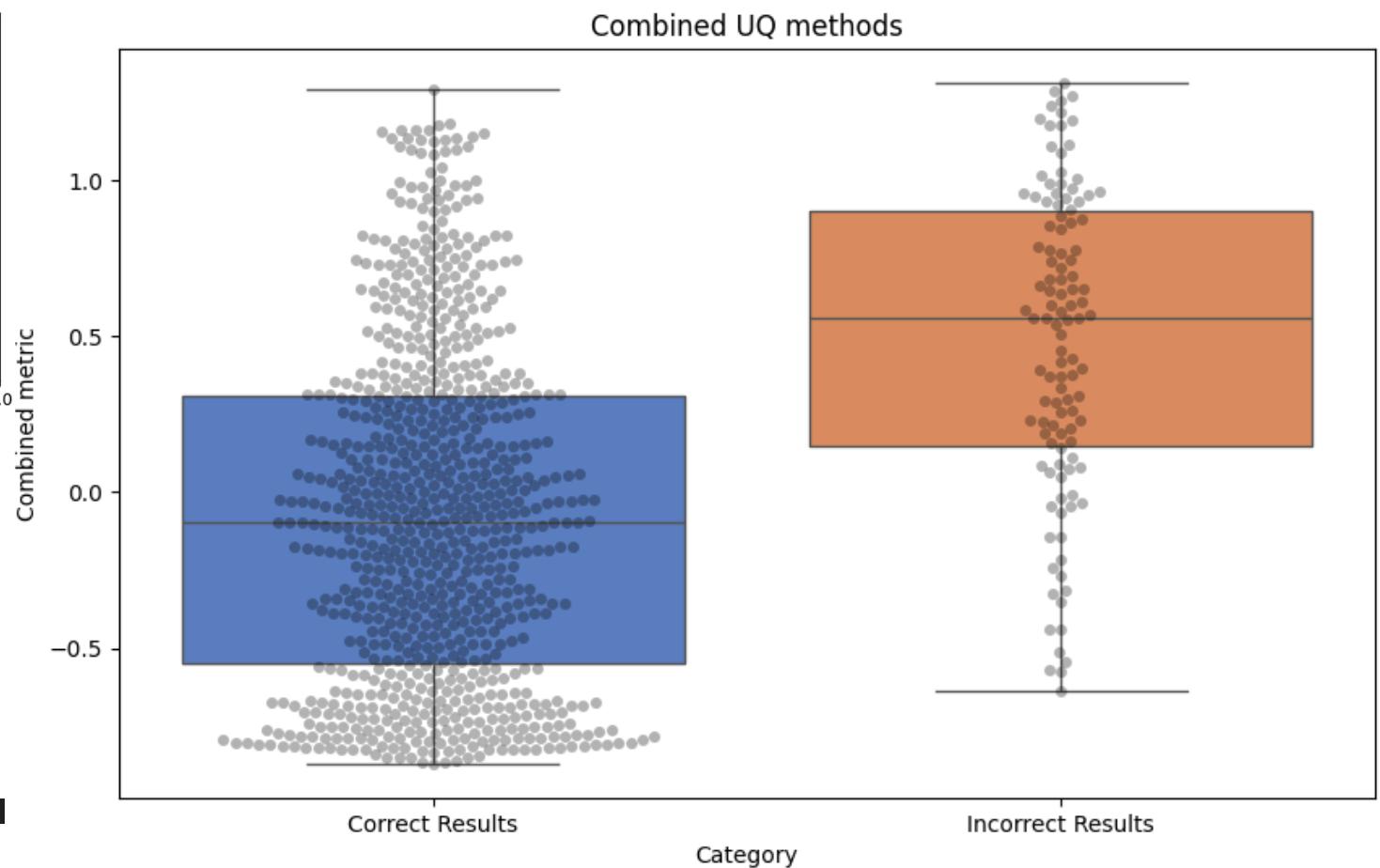
Uncertainty Quantification: Test-time augmentation

- Variability after augmentations at prediction to quantify uncertainty

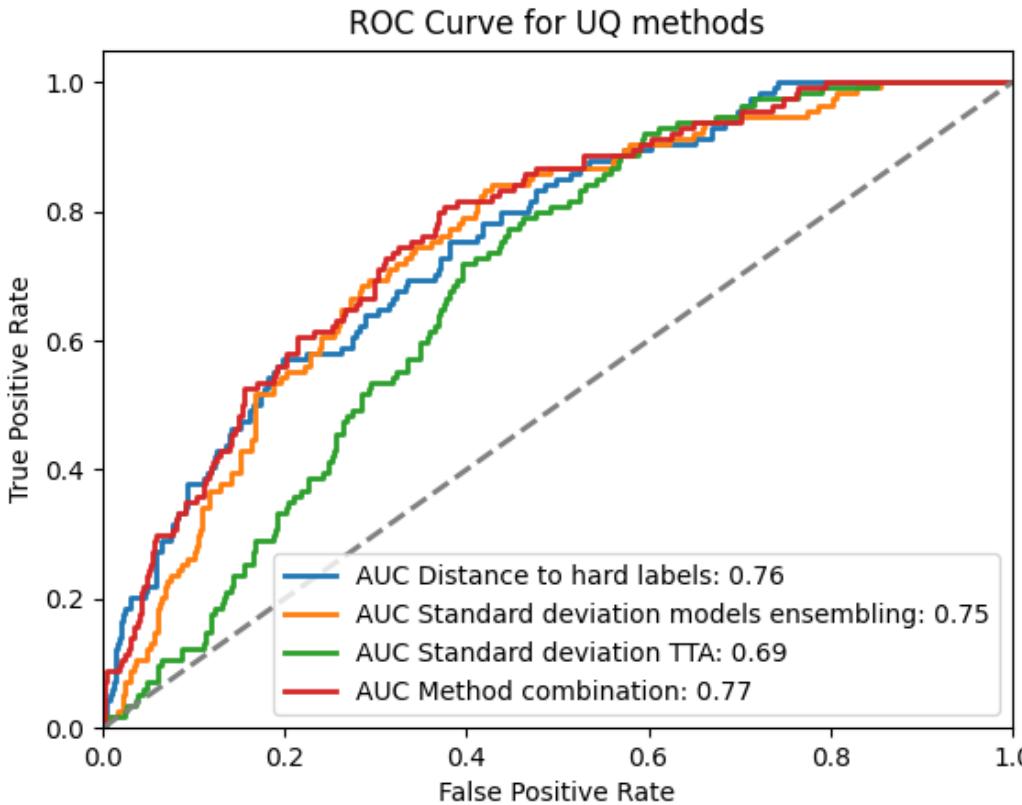


Uncertainty Quantification: Methods combination

- How to combine results (different metrics and scales) ?
- Standardization + mean result across methods



Methods evaluation



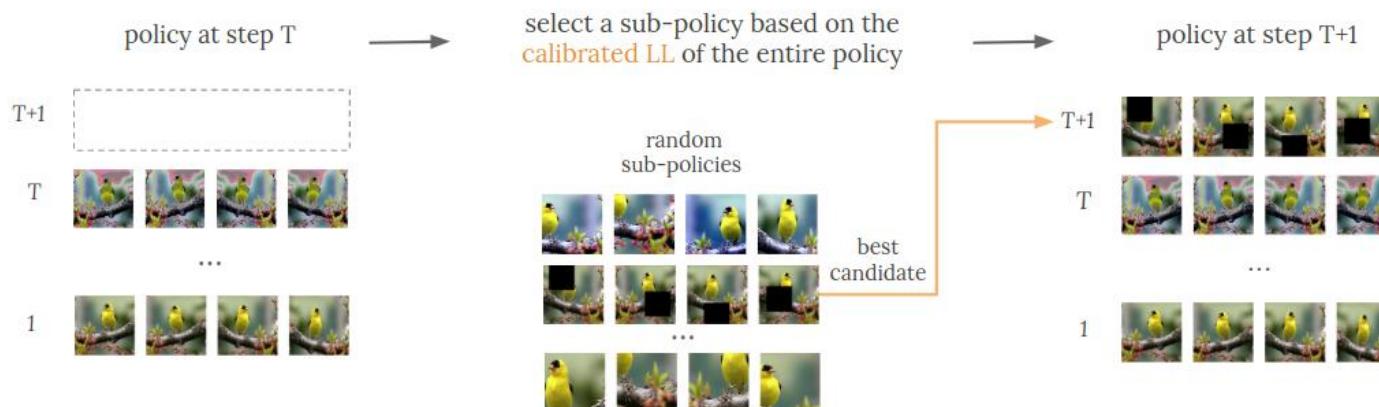
- Receiver operating characteristic curves to evaluate performance of each UQ method + Combination method
- Clear trend, but not good enough to almost systematically identify failure cases

- *Uncertainty quantification:*
 - New post-hoc methods to implement and test (test-time augmentation, out of distribution detection into latent space...)
 - Evaluation of methods to combine UQ metrics
- *Use cases:*
 - Add more patients (80 labelled MRI ready) for BIRADS classification task
 - Test methods on other models available at the lab (segmentation, multi-class classification, survival prediction)

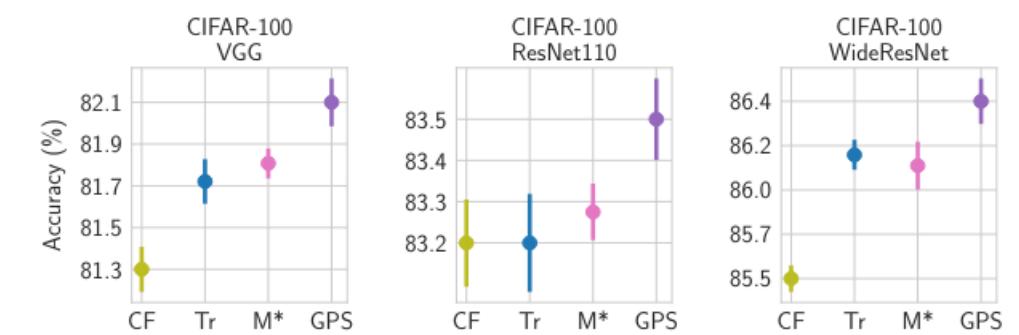
Test-time augmentation, article review: GPS (Greedy Search Policy)

Problem: Already trained black-box model with **no control on augmentation** policies used →
Variability involved by **too aggressive augmentations** can bias TTA results by **modifying labels**
Needed: Black-box model and external dataset

GPS: Learn test time augmentation policies that best improves predictive performance and UQ.



Iterative process that searches sub-policy that most improves calibrated log-likelihood at each step

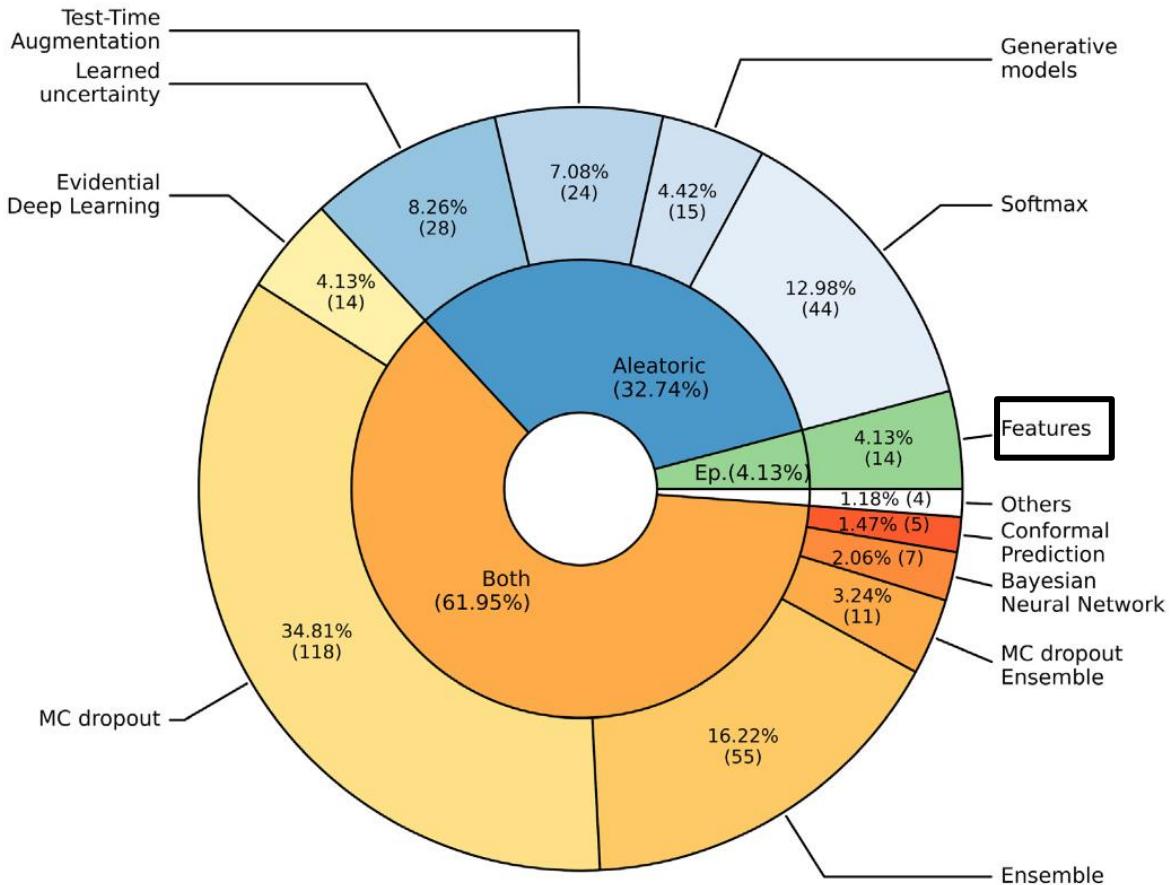


Results on varying type of tasks/models/datasets vs random crops and horizontal flips (CF), augmentation used for training (Tr) and Randaugment with optimal magnitude (M*)

Methods for Uncertainty Quantification

Needed:

- Trained model (w/wo data augmentation)
- Training set
- Annotated test set



Out of distribution detection

