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DLMI 2024 — Deep Learning for Medical Imaging — Summer School

« Summer school on deep learning methods in the context of medical imaging (5th edition)
* 1 week with conferences and hands-on sessions at ETS Montreal
» Topics:
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Basics of DL

CNN

GAN - Diffusion models

RNN — Transformers

Uncertainty Quantification

Medical images typical issues
Self-supervised — Weakly supervised learning
Foundation models
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Foundation Models

Traditional (task-specific) learning
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Foundation Models

Traditional (task-specific) learning

-
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How to adapt to novel tasks?




Foundation Models

Traditional (task-specific) learning

f

How to adapt to novel tasks?

A substantial amount of target samples need to Limitations

be labeled

\

Large scale labeled datasets may be significantly different, hindering transferability

o " " e
7 —— ! E TN -
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Source Target

Adaptation still requires fine-tuning of the whole model.
This increases the computational complexity.

LITO



Foundation Models

What are foundation models?

Sentient o3
n Analysis

Information
Extraction

Foundation
model

3D Signals ‘Z==°
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Foundation Models

Revisit language-vision models
(the main topic of this talk)

Main idea

Visual domain Language domain

> "An orange sports car”

> "A photo of a dog”

> “A sketch of an aircraft”

LITO



Foundation Models

Contrastive Language-Image Pre-training (CLIP)

Pepper the (T \‘
aussie pup ’—) Er'.Ir:O)gBr ‘

Image [ ]
Encoder

Contrastive
pre-training
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28

Radford et al. Learning transferable visual models from natural language supervision. ICML'21
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Medical applications: MedCLIP (Chest XRays)

MedCLIP: Contrastive Learning from Unpaired Medical Images and Text

Extract entities from text Sampling a batch of reports

Embedding extraction

| [y Py
| & Small, nodular opacity in the | g-—- —_— Text _ _
| S, 1 | = Encoder ACC(STD) | CheXpert-5x200 MIMIC-5x200 COVID RSNA
} } CLIP 0.2016(0.01)  0.1918(0.01)  0.5069(0.03)  0.4989(0.01)
| [tungtesion | [tung opecity ] | CLIPgs 0.2036(0.01)  0.2254(0.01)  0.5090(<0.01) 0.5055(0.01)
1 [V2 ] [Vn ConVIRT 0.4188(0.01)  04018(0.01)  0.5184(0.01)  0.4731(0.05)
T Semantic ConVIRTgs 04224(0.02)  04010(0.02)  0.6647(0.05)  0.4647(0.08)
Matching L i
knowledse —Semnti atching Loss Predicted GLoRIA 0.4328(0.01) 0.3306(0.01)  0.7090(0.04)  0.5808(0.08)
Extractor similarit — simitarity GLOoRIAENs 04210(0.03)  03382(001)  0.5702(0.06)  0.4752(0.06)
i Matrix &
atoes afix s MedCL TP-ResNet 0.5476(0.01) 0.5022(0.02)  0.8472(<0.01) 0.7418(<0.01)
MedCLTP-ResNeteys | 0.5712(<0.01)  0.5430(<0.01) 0.8369(<0.01) 0.7584(<0.01)
MedCLIP-ViT 0.5942(<0.01)  0.5006(<0.01) 0.8013(<0.01) 0.7447(0.01)
MedCLIP-ViTgys | 0.5942(<0.01)  0.5024(<0.01) 0.7943(<0.01) 0.7682(<0.01)

g S { Image
— Encoder

sampling a batch of images

Embedding extraction

Zero-shot classification task

Medical images w/ labels

Figure 3: The workflow of MedCLIP. The knowledge extraction module extracts medical entities from raw medical
reports. Then, a semantic similarity matrix is built by comparing medical entities (from text) and raw labels (from
images), which enables pairing arbitrary two separately sampled images and texts. The extracted image and text
embeddings are paired to match the semantic similarity matrix.
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Medical applications: MedPrompt (Chest XRays)

Exploring Low-Resource Medical Image Classification with Weakly Supervised Prompt
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MedPrompt architecture: MedClip +
Prompt learning module

Method CheXpert MIMIC-CXE  COVID  RSNA

CLIP [4] 0.2036 (.2254 05090 0.5055
ConVIRT [5] 0.4224 0.4010 06647 04647
GLoRIA 04210 (.3382 05702 04752
MedCLIP-ViT 0.5942 0.5024 0.7943  0.7682
MedPrompt-ViT {Ours) 0.6220 0.5720 0.7997  (.7284

Table |: Performance of zero-shot image classification on four datasets. For
models with manually designed prompts, we only report the results with prompt
ensemble. Best performance are in bold.

Method CheXpert MIMIC-CXE COVID  RSNA
MedPrompt-ViT (-shot 0.6220 0.5720 07997  0.7284
MedPrompt-ViT |-shot 0.6315 0.5895 0.8020  0.7538
MedPrompt-ViT 2-shot 06360 0.5875 0.8290  0.7665
MedPrompt-ViT 4-shot 06400 0.5870 08627  0.7761
MedPrompt-ViT 8-shot 0.6320 0.5815 08693  0.7778
MedPrompt-ViT 16-shot 0.6500 0.6000 08700 08013

MedPrompt-ViT full-shot 0.6580 0.6160 09553  0.8304

Table 3: Performance of few-shot leaming of our model on four datasets. Best
performance are in bold.

Results for zero-shot and few-shots
image classification

LITO
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Medical applications in segmentation: CLIP Driven

CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection
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Medical applications in segmentation:

CLIP Driven

Main idea

Text branch
(generates text embedding for class k) Wk

Visual branch-encoder §

(generates visual embedding for image x) f :
%
:

Text-based controller MLP O, = MLP(wy @ f) e

(generates class parameters)

0 = {Ok,,0%,,0r. }
Visual branch-decoder It represents foreground
(generates visual embedding for image x) P, = sigmoid(((F * O, ) * Ok,) * Or,) class k vs background
Training loss Binary cross-entropy per class (and terms masked for those classes not present)

e at Al 1L ID Nrivian smiuaraal madal fAar arnan camnmantatinn Aand Himar datantian I0OOVD9

K
= Z Lirey) - BCEg
k=1

168
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Medical applications in segmentation: CLIP Driven

Table 2. Leaderboard performance on MSD. The results are evaluated in the server on the MSD competition test dataset. All Dice and Table 3. 5-fold cross-validation results on BTCV. For a fair comparison, we did not use model ensemble during the evaluation. All exper-
NSD metrics are obtained from the MSD public leaderboard. The results of MRI-related tasks were generated by Swin UNETR [70]. iments are under the same data splits, computing resources, and testing conditions. Universal Model achieves the overall best performance,
Task03 Liver Task07 Pancreas yielding at least +3.9% DSC improvement over the state-of-the-art method.
Method Dicel Dice? Avg. NSDI NSD2 Avg. Dicel Dice2 Avg. NSDI NSD2 Avg. Methods Spl RKid  LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.
Kim er al. [34] 94.25 72.96 83.61 96.76 88.58 92.67 B0.61 51.75 66.18 95.83 T3.09 8446 RandPatch [(9] 95.82 88.52 90.14 68.31 75.01 96.48 8293 88.96 8249 73.54 7548 66.09 80.76
Trans VW [22] 95.1% 76.90 26.04 97 86 92.03 0495 81.42 51.08 f6.25 9507 70.13 83,10 TransBTS [ 0] 94.59 89.23 90.47 68.50 75.59 96.14 83.72 88.85 82.28 74.25 75.12 66.74 80.94
C2FNAS[5Y] 09498 72 89 £3.04 Q%38 8915 93.77 20.76 54.41 67.59 96.16 75.58% &5 87 nnFormer [V-] 9451 88.49 93.39 65.51 74.49 96.10 83.83 88.91 80.58 75.94 77.71 68.19 81.22
Models Gen. [ 100] 9572 7750  86.61 9848 9192 9520 | 8136 5036 6586 | 96.16 7002  83.09 UNETR [27] 9491 9210 9312 7698 7401 96.17 7998 8974 8120 7505 80.12  62.60 81.43
nnUNet [30] 9575 75.97 %5.86 %55 90.65 9460 8164 52.78 6721 9614 7147 8381 nnU-Net [ 0] 95.92 88.28 92.62 66.58 75.71 96.49 86.05 88.33 82.72 78.31 79.17 67.99 82.01
DIiNTS [2] 95.35 74.62 £4.09 98.69 91.02 0486 ]1.02 55.35 68,19 06.26 75.00) %608 Swin UNETR [ 1] 95.44 93.38 93.40 77.12 74.14 96.39 80.12 90.02 8293 75.08 81.02 64.98 82.06
Swin UNETR [70] 0535 T5.68 8552 | 0834 0150 0497 | 8185 5821 7071 | 9657 790 ®784 Universal Model  95.82 9428 94.11 7952 7655 97.05 9259 91.63 8600 7754 83.17 7052 | 86.13
Universal Model 95.42 79.35 87.39 98.18 93.42 95.80 82.84 62.33 72.59 96.65 82.86 89.76
Task(8 Hepatic Vessel Task(6 Lung Task(9 Spleen Task10 Colon
Method Dicel Dice2 Avg. NSDI NSD2 Avg. Dicel NSDI Dicel NSDI Dicel NSDI
Kim e al. [ 4] 6234 68.63 65.49 83.22 7843 8083 63.10 62.51 91.92 94 .83 49.32 62.21
Trans VW [27] 65.80 71.44 68.62 24.01 80.15 8208 74.54 76.22 97.35 99 .87 5147 60.53
CIFNAS[#9] 64.30 71.00 67.65 #3.78 B0.66 82.22 70.44 7222 06.28 97.66 58.90 72.56
Models Gen. [100] 65.80 T1.44 68.62 84.01 80.15 82.08 74.54 76.22 97.35 00.87 51.47 60.53
nnlINet [01] 66.46 T71.78 69.12 84.43 8072 8258 73.97 76.02 97.43 99.89 58.33 68.43
DiNTS [24] 64.50 71.76 68.13 83.98 81.03 8251 74.75 77.02 96.98 99.83 5921 70.34
Swin UNETR [70] 65.69 72.20 68.95 84.83 8162 8323 76.60 77.40 96.99 99 84 59.45 70.89
Universal Model 67.15 75.86 71.51 84.84 85.23 85.04 80.01 81.25 97.27 99 .87 63.14 75.15
100 985841 B6.7 658
B27

Z a0 .9 57,1669 - 508 B9.4 686 = )

1?1, 579 626623 s B Universal Model

a I Ill i |l‘ I H ; i "‘l I ﬂ B Swin UNETR (SOTA)

T T L T T T T
Liv Liv Tumor Lung Tumor Pan Pan Tumor HepaticWes  Hepatic Tumeor Spi Colon Tumor

Figure 3. Benchmark on MSD validation dataset. We compare Universal Model with Swin UNETR [ 70] (previously ranked first on the
MSD leaderboard) on 5-fold cross-validation of the MSD dataset. Universal Model achieves overall better segmentation performance and
offers substantial improvement in the tasks of segmenting liver tumors (+14%), pancreatic tumors (+8%). and colon tumors (+11%).

ground Un z
truth Model UNETR

Figure 5. Pancreatic tumor detection. Qualitative visualizations of the proposed Universal Model and five competitive baseline methods.
We review the detection results of tumors from smaller to larger sizes (Rows 1-3). When it comes to a CT scan without tumor from other
hospitals, the Universal Model generalize well in organ segmentation and does not generate many false positives of tumors (Row 4; §4.2).

M Ed I Cal Seg m e ntatl O n Decath I On The visualization of tumor detection in other organs (e.g.. liver tumors and kidney tumors) can be found in Appendix Figures 10-11.

results comparison Beyond the Cranial Vault (BTCV)
Segmentation Challenge results comparison

LITO 13
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Développement de méthodes pour la création de modéles d’lA

Paul Steinmetz - 02/10/2024

performants et robustes en imagerie medicale i !nserm
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Plan

« Context

« Use case: BI-RADS classification:
« Data pre-processing
 Training strategy and model
* Training results
« External evaluation results

« Uncertainty Quantification:
* Results
* Next steps

LITO
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Context

« Lack of robustness and adaptability of models to domain shift + inability to identify failure cases
—> main bottleneck for adoption in clinical practice

« Example: segmentation of breast MRI tumors for prognostic evaluation. High performance
models but in case of failure - incorrect prognosis, may lead to inappropriate patient
management

. ‘ ‘ N Dice score = 0,95
all
1]

EEE— N 'l SN Dice score = 0,56 A

UNet \ /

Raw images Segmentations

« Uncertainty quantification can help identify cases at risk of poor performance, that need to be
reviewed

LITO
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Uncertainty Quantification (UQ)

« Multiple approaches described in the
literature?*

« Often directly integrated in architecture /
during training (intrinsic methods) = not
easily generalizable

« Post-hoc methods: applied after model
training, with no knowledge on model
architecture or weights

* Goal of thesis: develop post-hoc UQ
methods as a python library and test it on
multiple scenarios (classification,
segmentation, regression, with/without
access to training data...).

Learned

uncertainty \

Evidential
Deep Learning 8.26%
(28)

4.13%
(14)

Both
(61.95%)

34.81%
(118)

MC dropout —/

Generative

/ models

4.42%
(15)

Ep.(4.13%

1.18% (4) |— Others

.06% (7)

3.24%
(11)

~— Bayesian
Neural Network

\ MC dropout

Ensemble

16.22%

(55)
\— Ensemble

Lambert, B., Forbes, F., Doyle, S., Dehaene, H., & Dojat, M. (2024). Trustworthy clinical Al solutions: a unified review of uncertainty quantification in deep learning models for medical 17
image analysis. Atrtificial Intelligence in Medicine, 102830.



Use case model — BIRADS classification

« Breast Imaging Reporting and Data System (BI-RADS) : Atlas
standardizing breast imaging terminology + structure assessment (shape,
margin) and classification system in X-Rays, US and MRI

« Shape criteria shown to be associated with complete response to
neoadjuvant chemotherapy:

ACR BI-RADS® ATLAS

Imaging Reporting and Data System

2013

« 103 MRI sequences for training/evaluation + 31 external test cases
« CNN to predict shape of tumors S

Data Dictionary

Round shape Irregular shape

Malhaire, C., Selhane, F., Saint-Martin, M. J., Cockenpot, V., Akl, P., Laas, E., ... & Frouin, F. (2023). Exploring the added value of pretherapeutic MR descriptors in predicting breast 18
cancer pathologic complete response to neoadjuvant chemotherapy. European Radiology, 33(11), 8142-8154.



Training with natural data augmentation

* Problem: small number of patients (initial DB n=103) + imbalanced classes (1:4) --> data
augmentation needed
* Proposal: from 3D to 2D --> use of MRI slices + 3D random rotations of the tumors

Axial MIP with Train: from 103 to
segmented tumor 4312 images

LITO 19



2D slices auto-labelling

0.868 Irregular
300 | ™8 Dice 1600 - L Irregylar
W Ambiguous
%‘ 200 1400 B Round
E 100 1200 -
0l 1000 -
Round
800 4
300 H Dice
>, 600
E 200
= 400 -
= 100
200 +
9 H 0 3 i =0 ° 0:2 0:4 O.IG 0.8 1.0 0 -
Dice computation between Slices dice scores distributions for Final repartition (downsampling
tumor 2D mask & ROI-enclosing « Round »-labelled tumors and for irregular class to 1200 to balance)
ellipsoid (from PCA of mask) « Irregular »-labelled tumors

Problem: “round”(“irregular”)-labelled tumors # all slices round (irregular)

Proposal: 3-class distribution, dice-based: “Irregular” (dice<0.8) | “Ambiguous” (0.8<=dice<0.9) | “Round”
(dice>0.9)

External evaluation DB (domain shift evaluation): from 31 to 1349 images

LITO 20



Training: Data & CNN Architecture

202,
)
103
patients
5X Cross-

validation

Training with
and without
random data
augmentation

O0~0
o~ ——
(‘\/ﬁ

Train set (n=82)

@)
O ——
N
Test set (n=21)

AR EEE S
FEINEENE
EENENEEEO
EEEDEEEER
ENEEEE

TAEEEEEE
FESNEERER
EENEEEEEO
AEENEDNENER
AEEEEE

Folds 1 2 3 4 5
Round 957 1041 978 088 848
Irregular 970 889 953 979 1009
Round 246 162 225 215 191
Irregular 230 162 247 221 191

Downsampling when imbalance > 2:3

-

-

Test slice

\ example

=

Convolution 3+3

32@25x25

ax-Pool Convolution 3+3

32@12x12

Dense

__, 1f<0.5: Round slice
Else: Irregular slice

Dropout + weight decay for regularizatioy

~

LITO
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Training results from cross validation

0.7

Fold_0 Training and Validation BCE Loss

0.6

0.5+

Loss

0.4 4

0.3 1

0.2

0.7

0.6

0.5+

Loss

0.4 4

0.3 4

0.2

0.7

0.6

0.5+

Loss

0.4 4

0.3 1

0.2

AN

—— Train loss
Validation loss

T T — T ‘ T
Fold_2 Training and Validation BCE Loss

AN

—— Train loss
Validation loss

T T — T 1 .
Fold_4 Training and Validation BCE Loss

—— Train loss
Validation loss

S~

J

T T T T
2 4 6 8 10 12 14

Epochs

Loss

Loss

0.7

0.6

0.5 1

0.4 4

0.3+

0.2

0.7

0.6

0.5+

0.4 4

0.3 4

0.2

Fold_1 Training and Validation BCE Loss

—— Train loss

Validation loss

f f — T : ‘
Fold_3 Training and Validation BCE Loss

—— Train loss
Validation loss

Epochs

Without augmentation
(15 epochs)

Overall good performance

No important differences with and without data augmentation at training:

Loss

Loss

Loss

0.7

0.6

0.5 1

0.4

0.3

Fold 0 Training and Validation BCE Loss

0.2 =

0.7

0.6 4

0.5

0.4 4

0.3 1

\

—— Train loss
Validation loss

0.2

0.7

0.6

0.5 1

0.3

. .I Ep(‘]chs_ ‘ .
Fold_2 Training and Validation BCE Loss
\ —— Train loss
\ validation loss
*\M
T T . .I Epéchs, ; . T T
Fold 4 Training and Validation BCE Loss
\\ —— Train loss
..,_\ Validation loss
0 5 10 15 20 25 30 35 a0

0.2 =

Epochs

« Ww/o data augmentation: mean (SD) Roc AUC =0.89 (0.03)
e W data augmentation: mean (SD) Roc AUC = 0.88 (0.02)

Loss

Loss

0.7

0.6

0.5

0.4 1

0.3 4

0.2 =

0.7

0.6 1

0.5 4

0.4

0.3

0.2

Fold 1 Training and Validation BCE Loss

\ —— Train loss

\ Validation loss

L

\/\%

. .I Epluchs_ ‘ .
Fold_3 Training and Validation BCE Loss

\ —— Train loss
Validation loss
T T
Epochs

With augmentation
(40 epochs)

LITO
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External evaluation DB

Confusion Matrix

Predicted

Confusion Matrix

Without data | With data
augmentation |augmentation
Accuracy |0.81 0.87
Roc AUC |0.86 0.93
Sensitivity | 0.90 0.93
Specificity | 0.73 0.83

Predicted

Data augmentation increases
robustness and performance on new
unseen data

LITO
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Methods for Uncertainty Quantification

Needed:
- Trained model (w/wo data

augmentation) \
- Annotated test set /\

Test-Time

Augmentation
Learned

uncertainty \

Evidential
8.26%

Deep Learning
(28)
4.13%
(14)

(61.95%)

34.81%
(118)

MC dropout —/

Ep.(4.13%

Generative

/ models

/— Softmax

4.13% ___ Features
(14)

1.18% (4) |— Others
Conformal
(7) Prediction
~___ [~ Bayesian
Neural Network

S~ MC dropout

Ensemble

(55)

p Ensemble

LITO
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Uncertainty Quantification: Model calibration — Softmax

Is the output probability correlated with the frequency of correct predictions ?

Calibration Curve

Irregular ——- Perfectly Calibrated

1.0 ) ) B,
—e— Model Ensembling Calibration Curve

0.8 1

0.6

Fraction of Positives

T 0.4 4

0.2 1

Round 0.0 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

For predictions < 0.5: below x=y curve -->underconfident | above --> overconfident

> (0.5: above x=y curve -->underconfident | below --> overconfident



Uncertainty Quantification: Model calibration — Softmax

 If model correctly calibrated: predicted probability distance to hard labels (round: 0O,
Irregular: 1) as a proxy for UQ

Model Predictions Distance to hard labels
0.5
1.0 -
[ ]
0.4
0.8
[ ]
L g 0.3
0.6 4 g
|
[ ] o)
[=]
=
0.4 L] £ 02
E
[ ]
0.2 0.1 4
° d=0.23
0.0 4 .— —————
0.0 +
Correctlﬂesults Incnrrec{ Results
Category
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Methods for Uncertainty Quantification

Needed:

- Trained model (w/wo data
augmentation)

- Sub-ensembles results if
ensembling approaches

used in training y’
\

Test-Time
Augmentation

Learned
uncertainty

Evidential

Deep Learning 8.26%
(28)
4.13%
(14)

Generative

/ models
/— Softmax

4.13% ___ Features
(14)

Ep.(4.13%

1.18% (4) |— Others

MC dropout

— Conformal
2.06% (7) Prediction
Both > ~— Bayesian
(61.95%) Neural Network
34.81%
. ~JmMc dropout
/ Ensemble

16.22%

(55)

p Ensemble

LITO
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Uncertainty Quantification: Variability of deep ensemble results

 Variability of ensembling prediction to quantify uncertainty

Deep ensemble predictions distribution

Standard deviations ensembling
o
0.20
o o
0.15 A
i 3
Pri t
edictions ﬁ
. S 0.10 4
Deep ensemble predictions distribution
0.05 4
0.00q1 ® ' .
T T
Correct Results Incorrect Results
Category
0.2 0.4 0.6 0.8 1.0
Predict




Methods for Uncertainty Quantification

Needed:

Trained model (w/wo data
augmentation)
Annotated test set (if
augmentation policies y
search) \

Test-Time
Augmentation Generative
Learned models

uncertainty \ /

Evidential

Deep Learning 8.26%
(28)
4.13%
(14)
Both

(61.95%)

/— Softmax

4.13% ___ Features
(14)

Ep.(4.13%

1.18% (4) |— Others

— Conformal

) Prediction

~_ [~ Bayesian
Neural Network

34.81%
(118)

S~ MC dropout

Ensemble

MC dropout —/

16.22%
(55)

p Ensemble
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Uncertainty Quantification: Test-time augmentation

 Variability after augmentations at prediction to quantify uncertainty

Test Time Augmentation (n=50)

0.12 4 8
0.10 4 E
0.08 4
Test time augmentation predictions distribution (n=6) "

=

ﬁ [ ]
0.06 1

L
0.04 -
0.02 -
T T
. . . . Correct Results Incorrect Results
0.0 0.2 0.4 0.6 0.8 1.0 Category
Predict
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Uncertainty Quantification: Methods combination

* How to combine results (different metrics and scales) ?
« Standardization + mean result across methods

Model Predictions Test time augmentation predictions distribution (n=6)

Combined UQ methods

1.0

2 05
A
48]
=
-
Q)
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L

1664, @.83234986, ©.14155591], g 0.0
o

_0.5 -
5.65847891e-81, 2.99386973e-01, ' '
- Correct Results Incorrect Results
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Methods evaluation

ROC Curve for UQ methods

1.0
0.8
L
g
o 0.6
=
%
&
S 0.4
}_
— AUC Distance to hard labels: 0.76
0.2 7 Y AUC Standard deviation models ensembling: 0.75
— AUC Standard deviation TTA: 0.69
— AUC Method combination: 0.77
0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

« Receiver operating characteristic curves to evaluate performance of each UQ

method + Combination method
« Clear trend, but not good enough to almost systematically identify failure

cases
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Perspectives

« Uncertainty quantification:
* New post-hoc methods to implement and test (test-time
augmentation, out of distribution detection into latent space...)
« Evaluation of methods to combine UQ metrics
* Use cases:
« Add more patients (80 labelled MRI ready) for BIRADS
classification task
* Test methods on other models available at the lab
(segmentation, multi-class classification, survival prediction)

LITO
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Test-time augmentation, article review: GPS (Greedy Search Policy)

Problem: Already trained black-box model with no control on augmentation policies used -
Variability involved by too aggressive augmentations can bias TTA results by modifying labels

Needed: Black-box model and external dataset

GPS: Learn test time augmentation policies that best improves predictive performance and UQ.

select a sub-policy based on the

olicy at step T+l
of the entire policy — policy p

policy at step T e

CIFAR-100 CIFAR-100 CIFAR-100

. T+1 H u w u VGG ResNet110 WideResNet
random

! & ﬁ w E A e S S & ol + 835 so4 +
: ’ (! T ‘ = -
T EEEE :
éﬂ %  Dbest 81.7 + o 86.0 +
’ 833 * '

T+

Accuracy (%)

81.5

&:IMWIQ!E TR
. - N T N 1 . A 3B WS 83.2
; 81.3 85.5
2 o \, ! =
' gy . CF Tr M* GPS CF Tr M* GPS CF Tr M* GPS

Results on varying type of
tasks/models/datasets vs random crops and
horizontal flips (CF), augmentation used for
training (Tr) and Randaugment with optimal
magnitude (M*)

85.7

Iterative process that searches sub-policy that most
improves calibrated log-likelinood at each step

LlTO https://github.com/SamsungLabs/gps-augment 34



Methods for Uncertainty Quantification

Needed:

- Training set

- Annotated test set

- Trained model (w/wo data
augmentation)

x

Test-Time

Augmentation Generative
Learned models
uncertainty \

Evidential

Deep Learning 8.26%
(28)
4.13%
(14)

/— Softmax

4.13% __,_|Featu res
(14)

1.18% (4) |— Others

— Conformal
Prediction

Ep.(4.13%

—___ [/~ Bayesian

Both
(61.95%) Neural Network
34.81%
ropout
(118) " MC drop

Ensemble
MC dropout —/

(55)

p Ensemble
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Out of distribution detection

New
instance(s)

Train set

g

Test set

CHNE

Autoencoder training

 —— )

> Learned reduced space with important

N

N features + UMAP/tSNE for 3D viz I

=N

—/

(from

scratch/transfer learning)

(

Features extraction

f

p E}. N

1

Class predictions <:
from altered

images

Latent features permutation Decoded

altered images

juauodwod pIE

New instance (or test set) vs train
set projection in reduced space

$

Out of distribution
computation
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