CT-free Total-body PET segmentation

Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi

= Low-dose PET => CT-based PET attenuation and
scatter correction

= CT est important pour I'attenuation and scatter
correction

= Mais le CT ajoute une dose importante de radiation

= But: Segmentation multi-organes corps entier a
partir des images PET non corrigées

= Premiere étape vers du “true CT-free PET”

Louis Rebaud
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CT-free Total-body PET segmentation

Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi

= 18F-FDG PET/CT corps entier de 114 patients

= Ground truth génerée par MOOSE sur les images CT
images

= nnU-Net architecture

= Entrainé sur les non-attenuation and non-scatter
corrected PET images

= Average DICE : 0,82

= Trois médecins nucléaires ont confirmé que les
segmentations étaient fiables

Louis Rebaud
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CT-free Total-body PET segmentation

Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi

Average DICE : 0,82

70% des organs ont un DICE > 0,80

Mais il y en a des plus difficiles:
= Vessie (0,70)
= Thyroide (0,69)
= Pancréas (0,59)

Développements futurs:
= Délinéation manuelle des organes

= Données d’autres scanners

Louis Rebaud
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

= Contrast-enhanced CT (ceCT): administration d’'un agent de
contraste a base d’iodine

= Améliore l'interprétation morphologique des |ésions
=  Améliore la délinéation des vaisseaux et des tissus mous

=  Probléemes:
= Réactions allergiques

= Contre indiqué chez les patients avec d’insuffisances rénales ou
de probléeme de thyroide

= |nconfortable

= Plus grande dose de radiations Reactions to iodinated contrast media
(Tasker F. et al., Clin. Exp. Dermatol., 2019)

= But: déterminer I'image ceCT a partir du PET et du neCT

Louis Rebaud



Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

Dynamic total-body PET K, image

= 10 patients (cross validation 8/2)

= Biograph Vision Quadra

Irreversible 2-tissue-compartment model

= 2D Residual Unet model K, b
, =580

= Prédiction sur les 2D axial slices

* Tracer delivery (K,) images can contain useful
information to help such networks to synthesize
virtual contrast enhanced CT images

18F-FDG Contrast agent
20s

CECT

t=0 65 min

Louis Rebaud 5



Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

: ] Synthesized ceCT
A
PET K, #“ )

2D UNET

---+ Used for training only

Louis Rebaud



Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

Synthesized ceCT

PETK,
2D UNET

---+ Used for training only
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

neCT ceCT PET-CT model CT-only model

' Better renal contrast in the images generated with the
P2 PET+CT model

Louis Rebaud



Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

neCT ceCT PET-CT model CT-only model

High contrast of vascular versus non vascular structures -
the CT-only model could not reproduce this

Louis Rebaud



Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from

dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, lan L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

Kidneys (cortex) , Aorta , Tumours

Louis Rebaud
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Poster 1: generate radiomic features not images

Improving treatment response prediction in lymphoma patients by generating synthetic
['8F]-FDG-PET radiomic features using CTGAN

Yashar A hmadyar!, Rezvan Samimi !, Alireza Kamali-Asl !, Parham Geramifar?

! Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
2 Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

*From 45 lymphoma patients (75 responders and

51 non-responders to neoadjuvant

chemotherapy)

~

Model Construction

Synthetic Data
(Generated using

CTGAN):

2126 Lesions
Feature selection:
nunimum redundancy
maximum relevance
(mRMR)

Real Data:
126 Lesions

Model:

The Radial Basis Function
Kernel of the Support Vector
Machine
(RBF-SVM)
Training/Testing: 80/20%
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: TABLE 1. Evaluation Metrics for SVM and SVM+CTGAN models
Lok L Model ACOC AUDC SEON SPOE
\ only used in training (real or fake) o SVM 84% 85% 88% 72%
. ”
T e e o o SVM+CTGAN 92% 92% 92% 91%

“How to Generate Real-World Synthetic Data with
CTGAN” - Miriam Santos — TowardsDataScience




Poster 2: leverage unsupervised learning for new discoveries ?

Annotation-free deep representation learning for automated cardiac amyloidosis
detection on 99™T¢ scintigraphy @MEDICAL UNIVERSITY
OF VIENNA

Clemens P. Spielvogel'*, David Haberl'*, Jing Ning2, Tatjana Traub-Weidinger', Rhodri H. Davies35, Iain Pierce35, Kush Patel5, Kilian Kluge!, Thomas Nakuz!, Adelina Gollner!, - - i I
Dominik Amareller!, Michael Weber?!, Min Zhao!, Xiaowei Ma7, Xiang Li!, Alexander R. Haug!, Raffaella Calabretta!, Leon Menezes5. Roberto Sciagra8. Thomas Treibel3:s. i i &

Marcus Hacker! and Christian Nitsche3:4:5

*~16000 patients with 99mTC scintigraphy scans (4 different

tracers, 9 centers, 10 scanners...)
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Poster 3: multimodal approach and interpretation strategies

ﬁ MICHIGAN STATE UNIVERSITY

A daptable Feature Importance Estimation Framework for Fusion-

based Multimodal Deep Neural Networks

Muneeza Azmat*, Henry Fessler, Adam M. Alessio
Michigan State University

3 1.0
Medical I Predicted E g
caical 1mages : =
I 8 Fusion layer Importance Lg"q B Gradient
9 @ = 0.6 1 B Permutation
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1 e .. = Average
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CNN 0-
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= . ¥ 4§ §
He'a_ll_f}{‘RecordS Unimodaﬂ Predict malignancy for 5248 women who underwent
Importancej breast examination (from DCE MRI exam and clinical

data)
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e #1 FDG PET/CT tumor dissemination characteristic predicts the outcome of first-line systemic

SNMMI g “LHICAGD therapy in non-small cell lung cancer
ik ** lllinois, USA Weiyue Tan'2, Yi Zhang'2, Jie Wang'2, Zhonghang Zheng'2, Ligang Xing® , Xiaorong Sun?
AN N U AL ‘M E ET‘I ‘N G 1 Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
= ) A A 2 Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
EYE ON THE PATIENT 3 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

Objectif : étudier la corrélation entre les caractéristiques de la dissémination tumorale sur les images TEP/TDM au 18F-
FDG et la réponse au traitement du cancer du poumon non a petites cellules (NSCLC) de stade IV.

Méthodes :
« 101 patients NSCLC:
« Examen pre-thérapeutique TEP/TDM au 18F-FDG
« Données cliniques : age, sexe, statut tabagique, histologie (adénocarcinome, squameux, autres)
« Données radiomiques (Iésion primaire + metastases) : SUVmax, SUVmean, TLG, MTV, TMTV, Dmax
* Analyses de survie (courbes de Kaplan Meier + Cox) : OS, PFS

A B

Résultats : e g R N
IREN 17 s
B = 1 oef
s )3- 4 :u: w62
A B
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5 . 5:):;\ .\::,l ,-.u;v»)
= |
B i~ § -
s }-‘ 40} 5 }
; e N OS et PFS lorsque TMTV > 53 cm3 et Dmax > 48.5 cm

Figure 1 Kaplan—-Meier analyses of PFS and OS according to D,,,, or MTV,,,
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EYE ON THE PATIENT 3 Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

Objectif : étudier la corrélation entre les caractéristiques de la dissémination tumorale sur les images TEP/TDM au 18F-
FDG et la réponse au traitement du cancer du poumon non a petites cellules (NSCLC) de stade IV.

Méthodes :
« 101 patients NSCLC:
« Examen pre-thérapeutique TEP/TDM au 18F-FDG

« Données cliniques : age, sexe, statut tabagique, histologie (adénocarcinome, squameux, autres)

Données radiomiques (Iésion primaire + métastases) : SUVmax, SUVmean, TLG, MTV, TMTV, Dmax
* Analyses de survie (courbes de Kaplan Meier + Cox) : OS, PFS
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Figure 1 Kaplan-Meier analyses of PFS and OS according to D,,,,, or MTV,,,



Résultats:

3 scores déetermineés par facteurs de risque (0, 1 ou 2):

Score 0 (bon pronostic) = TMTV < 54cm3 et Dmax <
48.5Ccm

Score 1 (pronostic intermédiaire) : TMTV > 54cms3 ou
Dmax > 48.5cm

Score 2 (mauvais pronostic) : TMTV > 54cm3 et Dmax >
48.5Ccm
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MTVwb=21cm?
Dmax=13.5cm

Good prognosis

0S=33m

MTVwb=52cm?
Dmax =65 2em

Intermediate
prognosis

0S=30m
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Intermediate
Prognosis

0S=22

MTVwb=81cm?
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Poor prognosis
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Figure 2 Kaplan—Meier analyses of PFS (A) and OS (B) according to the
prognostic score constructed by D, ., and MTV ..(C) A 73-year-old female
(score 0) had an overall survival of 33 months. (D) A 59-year-old male (Score
1) had an overall survival of 30 months. (E) A 59-year-old female (Score 1)
had an overall survival of 22 months. (F) A 51-year-old female (Score 2) had
an overall survival of 16 months.




Résultats: B - LITO (Capricorne)
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Conclusion : la combinaison de la dissémination de la
tumeur (Dmax) et de la charge tumorale (TMTV) permet
d’améliorer la stratification du pronostic du NSCLC.




2023 #2 Visceral adipose tissue glucose uptake can predict distant metastasis
SN\MMF THICAGO in non-small cell lung cancer
e Vs Qiannan Wang!2,Caozhe Cui'2, Xiaomeng Li'-2, Doudou Lv'2,Yiyi Hu'2 Ning Ma'2, Weihua Yang'?,Zhifang Wu'2*
AN N UAL ‘M EET‘I ‘N G 'Department of Nuclear Medicine, the First Hospital of Shanxi Medical University;

EYE ON THE PATIENT 2Collaborative Innovation Center for Molecular Imaging of Precision Medicine ,Shanxi Medical University , taiyuan , China

Objectif : déterminer la relation entre la fixation du glucose du tissu adipeux sur les images TEP/TDM au 18F-FDG et la
survenue de métastases a distance dans le cancer du poumon non a petites cellules (NSCLC).

Méthodes :
« 59 patients NSCLC divisés selon la présence de métastases (24 M0/ 43 M1):
« Examen pre-thérapeutique TEP/TDM au 18F-FDG
» Données cliniques : histologie (adénocarcinome, squameux), Ki67, BMI
» Données radiomiques (3D slicer) : SUVmax, SUVmean, SUVpeak, TLG, MTV, SUVmax_VAT/SAT,
SUVmean VAT/SAT, VAT SUVmax/SAT SUVmax (V/S ratio), Volume VAT, Volume SAT.

Résultats :
% g | | H | \I/ 24 B () « 7 VAT SUVmax, VAT SUVmean et V/S ratio
\1{ / Tt (WY \ 1/ | S T chez les patients M1
E e « # significatives du VAT SUVmean entre les
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[ ' " ' ~ 2 =
R ) \ o s P p ‘ kg/m2) (p= 0.022)
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Résultats : LlTO (Capricorne)
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Résultats :

LlTO (Capricorne)
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Improvement of Gleason Grading Prediction in Prostate Cancer Stratification for Radical
Prostatectomy: a Machine Learning- based Theranostic Multi-omics Study

Jing Ning"'2%, Clemens Spiclvogel™*, David Haberl %, Karolina Tractova '4, Stefan Stoiber 2, Sazan Rasul *, V

Elisabeth Gurnhofer 2, Gerald Timelthaler?, Laszlo Papp * Michacla Schlederer 2, Marcus Huclcr3 Alexander Haug 2,

et e i, L0 it

stech Bystry ¢,
Lukas Kenner! 26

bty ik gy U Sy s Ao

Gleason Score (GS) in ncedle biopsy is the main determining factor for the decision of radical prostatectomy (RP). However, it brings various challenges to pati
procedure infections and the multiple invasiveness. A promising standardized workflow is in urgent need to be well established for the sid of precise clinical decisions.
In this study, we aim (o predict the whole mount Gl ling in prostate cancer for smart and precise patient stratification for radieal using  high-through
machine learning (ML) model and compare its pr«llnlw pevl«rlnmlu with that of needle blopsy.
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Background & Aim

Gleason Score (GS) in needle biopsy is the main determining factor for the decision of radical prostatectomy (RP). However, it brings various challenges to patients’ quality of life, such as post-
procedure infections and the multiple invasiveness. A promising standardized workflow is in urgent need to be well established for the aid of precise clinical decisions.

In this study, we aim to predict the whole mount Gleason grading in prostate cancer for smart and precise patient stratification for radical prostatectomy using a high-throughput
machine learning (ML) model and compare its predictive performance with that of needle biopsy.

| ) —
PETMR scans r I\I-f\/n'n'aru‘nn I TTPF samples
Patients and Materials From May 2014 to April 2020, 146 patients with newly diagnosed PCa in the
Vienna General Hospital were retrospectively enrolled in this study, all of whom underwent ¢2Ga- l‘
PSMA-11 PET/MR scans before radical prostatectomy in the nuclear medicine department of Vienna l"‘“s‘ Auo-delinciion Whole exome scquencing l Immmonisochemisry
General Hospital. After the surgery, patients were followed up until 1st December 2021.

Genes' ipathways’
mtation profile

v 4y
| |

g__ 6 * Data cleaning
o- + + « Data imputation
« Data standardization

Clinical Parameters GS in needle biopsy

;. ) Tissue microarray analysis
Feawre Exuaction
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e i}

I
Data harmonization
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B
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Genes mutated in more than 10% of the patients
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Fig. 1. Genes’ mutation profile
of the primary prostate cancer
cohort with prognostic
genomic  biomarkers (CNV
burden*, TMB¥*) and clinical
markers (BCR* status and
ISUP*). The figure profiled the

genes with the frequency of

more than 10% in the cohort but
the distribution of  genes

mutations status is sparse. There
is no clear associated pattern

.

between the gene mutation

0

e

2 Pathomics ~

NKX3.1_max
CDK2_max
STAT3_max
NKX3.1_avg:
FASN_max
- CD3_max
Strongly stained cells PSA_avg
Moderately stained cells
Weakly stained calls PSA_max:
H-5C0T€ g | s e A .2 A B R e |
0.00 001 002 003 004 005 0.06 0.07 0.08
e

Fig. 3. The workflow of pathomics and important pathomic features derived from ML model to predict

Patients
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Fig. 2. The mutation profile of the a-relate:
Pathways with prognostic genomic biomarkers (CNV
burden*, TMB*) and clinical markers (BCR* status
and ISUP¥*). There is no clear pattern between the
prognostic markers and the mutation profile of pathways
correlated with PCa tumorigenesis, progression and
metastasis in our PCa cohort. However, according to the
machine learning results, antifolate resistance, FoxO

signaling pathway, cell cycle pathway are the top 3 |

potential pathways that can predict ISUP.

profile and the clinical
prognostic markers; For genomic
markers, the gene mutation

ISUP grading. (A) Derived from FFPE samples, we constructed the tumor microarray and stained them with
potential prognostic biomarkers. Then pathologists assessed the IHC staining and gave the strongly/ moderately/
weakly stained cells, where H-score was calculated; (B).This bar plot showed PSA, CD3, FASN, NKX3.1, STAT3,
CDK2 are the most contributing biomarkers to predict Gleason grading. Additionally, it showed the maximum

profile is consistent with TMB.

value of the expression score performed better than average value of that.

Genomics Data Acquisition DNA was isolated from the formalin-fixed paraffin-
embedded tissue (FFPE) samples derived from the radical prostatectomy. And
whole exome sequencing (WES) analysis was performed.

Proteomics Data Acquisition We constructed the tissue microarray from RP
specimens in a good pattern which allows a homogeneous fixation for the
subsequent immunohistochemistry. Immunohistochemical analysis was
performed with PCa-specific biomarkers.

Fig. 4. Representative images of TMA cores stained
with PSA and NKX3.1. A. TMA core and the details
of tumor tissue with PSA high expression; B. TMA
core and the details of tumor tissue with PSA low
expression; C. TMA core and the details of tumor
tissue with NKX3.1 high expression; D. TMA core
and the details of tumor tissue with NKX3.1 low
expression.
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Fig. 5. The combined workflow of radiomics and
machine learning. First, the volumes of interest
(VOIs) were delineated based on *Ga-PSMA-11
PET/MR images via Hermes; Second, the radiomics
features were computed using the PyRadiomics
Software packages, which are classified into three
types including shape-based, histogram-based,
texture-based radiomic features. Machine learning
algorithms did feature selection based on
redundance maximum relevance. After ML
modelling, they sent us the results report.

“Feature Extraction ~ © | MLModelling Results Report
> : R
. PO i r

). i i i =l

i H Histogram based | ——s — Lon i

i i it T i ald [t

i i . S rerebased } u : =

Fig. 6. The important radiomic features in the
final machine learning model. (A) After ML feature
selection, the 9 shape-based features were ranked
= based on the importance index; (B) After ML feature

IM Segmentation

selection, the 4 histogram-based features were listed
based on the importance index;

B
(C). After ML feature selection, the 15 texture-based

features were divided into 5 subgroups including

Neighbouring Gray Tone Difference Matrix(NGTDM),

Gray Level Size Zone Matrix (GLSZM), Gray Level

Run Length Matrix (GLRLM), Gray Level Dependence

Matrix (GLDM) and Gray Level Co-occurrence Maln'x/
(GLCM).

Radiomics Data Acquisition To ensure robustness, standardization and to avoid intra-operator and
inter-operator variability, an automated U-net-based semantic segmentation algorithm was
employed to automatically delineate the prostate based on T2WI images and subsequently perform
a PET-based lesion segmentation on the previously created whole-prostate mask.

LITO



Improvement of Gleason Grading Prediction in Prostate Cancer Stratification for Radical
Prostatectomy: a Machine Learning- based Theranostic Multi-omics Study

Jing Ning*!123, Clemens Spielvogel™!, David Haberl '3, Karolina Tractova ', Stefan Stoiber !2, Sazan Rasul 3, Vojtech Bystry 4,

Elisabeth Gurnhofer 2, Gerald Timelthaler >, Laszlo Papp * Michaela Schlederer 2, Marcus Hacker 3, Alexander Haug ', Lukas Kenner!->¢

! Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria. 2 Dit
? Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided T

* Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria

—— 04 Machine Learning =
5 = AUC
0.9- - NPV
g ia = PPV
£ SPC
g 0.7 SNS
06 = ACC
0.5

KNN RF  SVM IGR XGB

Machine learning methods
Fig. 7. The performance of different ML models to
predict ISUP. Taking all the parameters together, RF*
method has the best performance, whose ACC, SNS, SPC,
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V, NPV and AUC are 0.78, 0.83, 0.72, 0.79, 0.80 and
| espectively.
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Fig. 8. The comparison of
predictive performance
between needle biopsy and RF.
A. The radar chart showed the
overall performance of RF is
better than that of needle biopsy;
B. The lollipop plot showed
compared to needle biopsy, the
SPC, PPV, ACC and AUC of RF
to predict Gleason grading were
elevated by 18% (0.61 vs 0.72),

. 7% (0.75 vs 0.791% (0.77 vs
0.78) and 11% Q0.73)vs 0.87)

Feature value

respectively while the SNS and
NPV were decreased by 7% (0.89
vs 0.83) and 1% (0.81 vs 0.80).

Fig. 9. The most 8 important
features in the RF model to

predict Gleason grading of PCa.

A. The SHAP value plot showed
the most important 8 features and
the correlation of these 8 fi

with ISUP. B-D. The partial
importance plots of the top 3
features confirmed the
relationship between the feature
value with ISUP value.

mo 62500, Czech Republic.

ML-based Data Integration The EBM classification algorithm were applied to the integration of
clinical parameters, radiomics data, genomics data and proteomics data. The classification results
were validated using JLO-fold Monte Carlo cross-validationfto ensure robustness of performance
metrics. To improve the interpretability of the model, relevant feature importance was derived using
permutation feature importance.

Based on the potential prognostic genomic markers (tumor mutational burden and copy number
variant burden) and clinical parameters (BCR status and ISUP), the heatmap (Fig. 1) showed the
distribution of genes with the frequency of 210% cases are substantially sparse and there were no
significant or meaningful correlation with the prognostic biomarkers. So, in the subsequent ML-
based analysis, only pathway-level data will be used to conform to the balanced grouping standards
of the machine learning system.

In the trial phase, the SNS, SPC, PPV, NPV, ACC and AUC of three ML-based approaches were
respectively calculated and the resultipg EBM classification algorithm gave the best performance
with 0.75, 0.88, 0.75, 0.88, 0.83 and hccordingly as shown in Fig. 2. Then 10-fold Monte Carlo
cross-validation ensures the robustness of performance metrics.

IThe performance of needle biopsy to predict Gleason gradingls 0.62,0.92,0.81, 0.81 an

respectively. Compared to the performance of EBM model, the SNS, NPV, ACC and AUC were
elevated by 13%, 7%, 2% and 4% while SPC, PPV were decreased by 4% and 6%.

Conclusion

Our findings demonstrate that our multiomics-based machine learning model has the better performance for the prediction of Gleason grading

than the current clinical baseline, which potentially facilitates the clinical decision-making and personalized management of prostate cancer.
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['®F]-FDG-PET radiomic features using CTGAN

Yashar A hmadyar!, Rezvan Samimi !, Alireza Kamali-Asl !, Parham Geramifar?

! Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
2 Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

BACKGROUND

_ Major

(@ Accurate prediction of lymphoma treatment outcome
0 financial and psychological consequences of ineffective treatment
0O Limited availability of large clinical datasets poses
0 time-consuming of data collection

4,\D most available datasets are small.

< In this retrospective study, we analysed 126 lymphoma lesions from 45 lymphoma patients from

v Radiomics analysis of ['F]-FDG PET/CT images using machine leaming methods H - - . C _r . .
b . vl i irepeiare e . Sy 7w two different centers (75 responders and 51 non-responders to neoadjuvant chemotherapy). We

ouicomes, OEETT used LIFEx software to extract radiomic features (shape, intensity, and texture) from pre-treatment

o0 s e TE oo Rl plenenin B CTOAR Ssiun 1o PET images. Then we applied ComBat harmonization to each feature set to correct site variability.
- develop a prediction model of chemotherapy response in lymphoma patients.

METHODS

1.Clinical Data and Radiomics Feature Extraction:.

r '8 3
Data Acquisition Segmentation Post_Treatment
& PET image
Feature
extraction

' Combat
" d B | Harmonization

Lesion:

Pre-Treatment
PET image

= - A total of 126
atients| i
P L‘I : p .n=75
lesions Non-responding, n = 51|

\ \ J

Fig 1. Flowchart of radiomics framework
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2.Synthetic Feature G eneration [1]:

| Major challenges

(@ Accurate prediction of lymphoma treatment outcome
0 financial and psychological consequences of ineffective treatment
0O Limited availability of large clinical datasets poses
0 time-consuming of data collection

4,\D most available datasets are small.

_

v" Radiomics analysis of ['F]-FDG PET/CT images using machine leaming methods
provides quantitative information on intratumor heterogeneity for predicting treatment

outcomes. OEET
|Generate synthetic PET radiomic features by implementing the CTGAN algorithm to
develop a prediction model of chemotherapy response in lymphoma patients. L il s bibinge— Fodlonhh ;

Fig 2. The CTGAN model operates by first sampling a condition and combining it with a random input
METHO DS to generate a sample. [2]
i a R 3 lFor synthetic feature generation, a Conditional tabular GAN (CTGAN) modell\as been used. CTGAN
1. Ghnical Datscand RusiomiorEeab Exioiction:. 3. Model Development: ISa TDased MOoUE! CTealed 10 SyniNesize taputar data and transtorms continuous values of a

distribution into bounded vectors, which are appropriate for neural networks. In this model, the

r '8 N
Data Acquisition | | Segmentation Post-Treatment Model Construction conditional generator has been used to resolve the problem of data imbalance during the sampling
Pre-Treatment Fe:t‘u“ PET image i =% Synthetic Data process. For the generator and discriminator, fully-connected networks were used to capture all
PET image extiaition Real Data: (Generated using correlations between columns. batch-normalization and Relu activation function applied in the
_ 126 Lesions 71‘;‘]’:\“{% generator. Using a mix activation functions, the synthetic row is generated after fully connected
Z n LIFE; — lavers. In discriminator, leaky relu function and dropout on each hidden laver. Utilizing this model
- 1 l N 1000 synthetic patients with new features for complete response and 1000 patients with
b Q ( Fextuie selection: progressive disease were generated separately in 1000 epochs. The Radial Basis Function Kernel of
Fomal minimum redundancy the Support Vector Machine (RBF-SVM) model was developed by radiomic features before and after
> . =5 > m | ‘“““‘“:‘l:‘!‘;;::)"“““ data augmentation using CTGAN. The minimum redundancy maximum relevance feature selection
4 5 = ‘ == 5 (MRMR) algorithm was used to select the ten most important features and eliminate the rest to
' : ¥ ¥ reduce the computations in the algorithm. We utilizedB0/20% splitting patient datasetsffor
o ( Model: training/testing, respectively. We assessed the performance of the models, using the area under the
The Radial Basis Function receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity.
Lesion: Kernel of the Support Vector
= e L\I A total of 126 Machine
ponding, n =75 (RBF-SVM)
lesions Non-responding, n = 51 | Training/Testing: 80/20%
L \ J

3 G Fig 3. Model Development and Evaluation.
Fig 1. Flowchart of radiomics framework
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BACKGROUND

] test set are shown in Figure 1. The AUC and accuracy increased following augmentation from 0.85to
s 0.92 and from 0.84 to 0.92, respectively. The SVM model achieves sensitivity and specificity of 0.92
1Cn 3nd 0,91 with data augmentation. Specificity increased by 19% and Sensitivity increased by 3%

after increasing the number of data to 2126 using CTGAN.

2.Synthetic Feature G eneration [1]: RE SULTS
Y- o . Major challenges By e *The ROC curve of the models for the test set are seen in Figure 4.
(@ Accurate prediction of lymphoma treatment outcome ) ) )
0 financial and psychological consequences of ineffective treatment 10 — 10 >
0O Limited availability of large clinical datasets poses 557 547
Q time-consuming of data collection 08 el 08 Pl
| @ most available datasets are small. g e £ P
b . 308 o % 06 527
v Radiomics analysis of ['8F]-FDG PET/CT images using machine leaming methods § ,/" f: #
provides quantitative information on intratumor heterogeneity for predicting treatment 3 o /" K e ¥
ou 347 s
‘Gener While both models could accurately predict response to therapy, the performance of the predictive ¥ s e ®l S
devele pdel was improved after data augmentation using CTGAN. The ROC curve of these models for the % a6 = L% G w u
False Positive Rate False Positive Rate

Fig 4. The ROC curve of SVM classifier with (left) and without (right) data augmentation using
CTGAN

TABLE 1. Evaluation Metrics for SVM and SVM+CTGAN models

& =EESLETT ad wviouer vomirucuon Model ACC AUC SEN SPE
Pre-Treatment Feature PET image | i Synthetic Data | SVM 84% 85% 88% 72%
PET image extiaction ‘ Real Data: (Generated using
_ SVM+CTGAN 92% 92% 92% 91%
: =
T
b Q e
Combat . .
. O > (st Fixer les effectifs du test set ! = [HINEREON
- e This study demonstrated:
b Model: » the capability of data augmentation using CTGAN for treatment response prediction
The Radial Basis Function .
Lesion: Kernel of the Support Vector Of lympho.ma pauems.' yavey 5
: Atotal £ 126 : Machine » incorporating synthetic PET radiomics features can improve the performance of SVM
48 P““’“’-“I ponding, n=75 (RBF-SVM) models when there is insufficient data available.
lesions Non-responding, n = 51 | Training/Testing: 80/20% FiER
1.Xu L, Skoularidou M, Cuesta-Infante et al. 2019.
= 5 = % - Fig 3. Model Development and Evaluation. 2.Bonsov, Leemann et al. 2022
Fig 1. Flowchart of radiomics framework




Evaluation of clinical variables affecting myocardial glucose uptake in diabetic patients

Yeongjoo Lee, M.D.}, ] aechyuk ] ang, M.D?, Sae Jjung Na, M.D. PhD.
Division of Nuclear Medicine Department of Radiology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

UNIVER \(OREP‘ s . LT 3 3 =22 S i % £
SITY OF 2Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Backgrounds

v'| About 39% of adults were overweight in 2016, and 13%
were obese worldwide

- World Health Organization, 2021

v Lipotoxic status such as obesity and type 2 diabetes shift
the heart toward more fat use.
- Nuclear cardiology & multimodal cardiovascular imaging,
2021. Chapter 19. Peterson et al.

v According to the ASNC Imaging guideline/SNMMI
procedure standard (2016), the patient preparation for F-18
FDG PET cardiac viability assessment is solely based on
the blood glucose (BG) level.

v" Diabetic patients sometimes show insufficient myocardial
glucose uptake, which leads to difficulties in interpretation.

No conflict of Interest.
This study was not funded.

Objective

To evaluate several clinical variables that may affect
myocardial glucose metabolism in diabetic patients.
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Backgrounds

v' About 39% of adults were overweight in 2016, and 13%
were obese worldwide
- World Health Organization, 2021

v Lipotoxic status such as obesity and type 2 diabetes shift
the heart toward more fat use.
- Nuclear cardiology & multimodal cardiovascular imaging,
2021. Chapter 19. Peterson et al.

v According to the ASNC Imaging guideline/SNMMI
procedure standard (2016), the patient preparation for F-18
FDG PET cardiac viability assessment is solely based on
the blood glucose (BG) level.

v" Diabetic patients sometimes show insufficient myocardial
glucose uptake, which leads to difficulties in interpretation.

No conflict of Interest.
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Objective

To evaluate several clinical variables that may affect
myocardial glucose metabolism in diabetic patients.

Material and Methods (1)

- Retrospective study (May, 2018 ~ November, 2022)
- Single center with single PET/CT machine.

Material and Methods (2)

Patient preparation

Acipimox (lipid lowering agent): 250 mg

Oral glucose loading of 50 g (46.1+9.1)

With/without R1 (regular insulin) depends on the blood sugar
level after oral glucose loading

2. PET/CT scan:
(1) F-18 FDG PET/CT
- 40 True-point with true V,
Siemens Medical Solutions, Knoxville, TN, USA
- Average dose of 370 MBq (10.4 + 0.58 mCi)

= oE

(2) Measurement

3cm sized sphere of Region of Interest (ROI):

- SUVmax of LV (left ventricle) @ .
- SUVmean of liver

SUVmax of LV

Myocardial Glucose Uptake Ratio (MGUR) = S

Inclusion criteria

1) Cardiac FDG PET/CT images for myocardial viability
assessment

2) Clinically diagnosed diabetes type 2 patients

LITO

Fasting BST (Blood Sugar Test)
- BST after glucose loading
BST atradiotracer injection
Injection to imaging time

w

Clinical parameters

height, weight, age, sex

- HbA1lc, Total cholesterol, LDL, HDL, Triglyceride, troponin T, CK-
MB

- All lab data were acquired within a month (3.54 + 11.3 d) from

PET/CT image

4. Data analysis

Group comparisons after dichotomization according to MGUR (below
average vs. above average) and BMI (Body Mass Index; Non-obese
group, BMI<25 vs Obese group, BMI 2 25)

Statistical Package for the Social Science version 24.0
(IBM corporation, Armonk, New York, USA)
Pearson correlation test, student’s t-test, Multiple linear regression
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Results (1) Table 2. Comparison of the variables between non-obese and obese 2xr| r=-0.264 20 £ =0.016
- ; . gralip p=0.006 A7:22 38216
Table 1. Comparison of the variables between low MGUR and high = =
atients N=109 B
MGUR group e e ]
: Variables Non-obese group  Obese group palue s e
Patients | EEECH | (BMI < 25, n=55) (BMI 2 25, n=54)
Variables Low MGUR group High MGUR group _ pvalue Sex AF) 55 @z T3] S5 ) 7R i el
(n=57,28411) {p=ha sasna) Age fyear) &4 2110 562 £ 100 0549
Sex (M:F} 57 (43:14) 52 (42: 10} N7A Height 164.5 £10.1 1641 + 9.5 0.825 @ [
Age (iean +50) BI9%116 B35 91 0236 o fWeagn R 756 £ 110 EIITR 3 s 50
Height 163714 89 1640 % 07 LECINS | - =
e e - 2 “Toungror CiEETIE] TR T =
ﬁw EFET T nn;w = Loading BST 22595 582 2208 ¢ 567 0651
FoUng BoT (EEAE TS EELEECEy T Injection BST 2220+ 554 2160 £ 490 0.488 o] & ]
g R STE T ST T - Tnsulin dose 32522 27122 0258 T
IpenaET e TR oo Trjection to image fime TeT T A g EV) 055 o
e e EE— i T Total cholesteral 4Bz 519 1513 £ 576 0538 2 & 1
Total b 34 P - Triglyceride 1295 £ 822 1664 £ 1158 0.081
Triglyceride 1676 + 1182 1268 759 0.038° HOL 406 £ 131 368 £67 0.066 ol o S
DL AN 5 L1195 0455 oL TRRA LR FRaabey Hhie - - . .
5L B121 529 B3T 1443 0798 Troponin T UEZ %174 080+ 178 0590 20 f 0 )
FopeAn T, 064+ 168 078 & 1685 0.662 CK-MB 117 364 180 L 474 0240 BMI Non-Obese group Obese group
CK-MB 118 £ 204 182+ 528 0429 HEATC TEE17 TE 17 o35
HBATC TEE1S IEESE] 0209 E A
GUR 47+ 22 38416 P | .
Statiscaly sgnigeant Figure 1. A scatter plot of BMI and Figure 2. A box plot of group

Statistically significant

Cases

MGUR; BMI has a negative correlation

with MGUR.

(A) F/66 BMI 17.9, insulin 4 U, FDG: 10.6 mCi,
120 min image, SUVmax: 10.8

LITO

(B) F/83, BMI: 35.6, insulin 4 U, FDG: 10.1
mCi, 120 min image, SUVmax: 4.5

comparison after dichotomization
according to the BMI
(Non-obese: BMI<25, Obese: BMI2 25)

Conclusion

= Among many clinical variables, obesity had a negative
correlation with myocardial glucose uptake in patients with
diabetes.

* In obese and diabetic patients, sufficient insulin administration
is required to enhance myocardial glucose uptake.




Chimeric Antigen Receptor T-cell Treatment for Non-Hodgkin Lymphoma:
A Comprehensive Bone Marrow Evaluation with FDG PET/CT

Bimash B Shrestha', Shashi Singh?, Miraziz Ismoilov! Saira Khan Niazi', Malia Ahmed?, Niloofaralsadat Motamedi', Thomas J. Werner!, Mona-Elisabeth R Revheim3, Poul
Flemming Hgilund-Carlsen?®, Abass Alavi', William Y Raynor®

Department of Radiology, University of Pennsylvania, Philadelphia, PA; 2Department of Radiology, Stanford University School of Medicine, Palo Alto, CA; *Oslo University Hospital and University of Oslo, Oslo, Norway; 4 Department of Clinical Research

Southern Denmark, Odense Oslo University Hospital and University of Oslo, Oslo, Norway; 5Rutgers Robert Wood Johnson Medical School

Purpose

To measure the global bone marrow uptake of '8F-
fluorodeoxyglucose (FDG) before and after treatment in
non-Hodgkin lymphoma (NHL) patients who underwent
Chimeric Antigen Receptor T-cell (CAR-T) therapy in order
to characterize response to therapy.




Penn Chimeric Antigen Receptor T-cell Treatment for Non-Hodgkin Lymphoma:
e A Comprehensive Bone Marrow Evaluation with FDG PET/CT

Bimash B Shrestha', Shashi Singh?, Miraziz Ismoilov! Saira Khan Niazi', Malia Ahmed?, Niloofaralsadat Motamedi', Thomas J. Werner!, Mona-Elisabeth R Revheim3, Poul
Flemming Hgilund-Carlsen?®, Abass Alavi', William Y Raynor®

Department of Radiology, University of Pennsylvania, Philadelphia, PA; 2Department of Radiology, Stanford University School of Medicine, Palo Alto, CA; *Oslo University Hospital and University of Oslo, Oslo, Norway; ¢ Department of Clinical Research, University of
Southern Denmark, Odense Oslo University Hospital and University of Oslo, Oslo, Norway; 5Rutgers Robert Wood Johnson Medical School

Purpose Figure 1

To measure the global bone marrow uptake of '8F-
fluorodeoxyglucose (FDG) before and after treatment in
non-Hodgkin lymphoma (NHL) patients who underwent
Chimeric Antigen Receptor T-cell (CAR-T) therapy in order
to characterize response to therapy.

Methods

Retrospective FDG PET/CT data of 60 NHL patients ‘mean
age 60.3 + 12.48 years, range 29-81, females 22) who

underwent CAR-T therapy were included (3 patients .
excluded as their baseline scans were performed at an FDG PET, CT, and fused FDG PET-CT images
outside facility). All scans were acquired 60 min following demonstrating CT-based segmentation of bone marrow

intravenous injection of 4 MBg/kg of FDG. activity.! An iterative Hounsfield unit threshold was applied,
Baseline scans before initiation of CAR-T therapy for followed by a morphological closing algorithm. Global
relapsed or refractory NHL and scans at first follow-up after SUVmean was calculated as the average SUV of all voxel

an average of 72 days (ranges 21-179 days) after treatment contained within the region of interest.

were analyzed.

Images were analyzed using an iterative thresholding
algorithm that delineates a continuous region based on
Hounsfield units (OsiriX MD version 12.5.2 software; Pixmeo
SARL; Bernex, Switzerland), allowing for segmentation of the - . .
total skeleton on a fused FDG PET/CT image. Maximum intensity
This enabled the quantification of FDG uptake representing projections :
the entire skeleton, providing a global SUVmean that . demonstrating serial
considers all bone marrow involvement. % FDG PET/CT imaging
Global SUVmean were compared before and after treatment % i Y ™ in a lymphoma patient

using Wilcoxon signed-rank test. receiving CAR-T
therapy.?

TD (time of decision), TT (time of transfusion), M1 (1 month after CAR-T cell infusion), and M3 (3 months evaluation
after CAR-T cells infusion)

Figure 2
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Purpose

To measure the global bone marrow uptake of 8F-
fluorodeoxyglucose (FDG) before and after treatment in
non-Hodgkin lymphoma (NHL) patients who underwent
Chimeric Antigen Receptor T-cell (CAR-T) therapy in order
to characterize response to therapy.

Methods

Retrospective FDG PET/CT data of 60 NHL patients (mean
age 60.3 + 12.48 years, range 29-81, females 22) who
underwent CAR-T therapy were included (3 patients
excluded as their baseline scans were performed at an
outside facility). All scans were acquired 60 min following
intravenous injection of 4 MBqg/kg of FDG.

Baseline scans before initiation of CAR-T therapy for
relapsed or refractory NHL and scans at first follow-up after
an average of 72 days (ranges 21-179 days) after treatment
were analyzed.

Images were analyzed using an iterative thresholding
algorithm that delineates a continuous region based on
Hounsfield units (OsiriX MD version 12.5.2 software; Pixmeo
SARL; Bernex, Switzerland), allowing for segmentation of the
total skeleton on a fused FDG PET/CT image.

This enabled the quantification of FDG uptake representing
the entire skeleton, providing a global SUVmean that
considers all bone marrow involvement.

Global SUVmean were compared before and after treatment
using Wilcoxon signed-rank test.

Figure 1

FDG PET, CT, and fused FDG PET-CT images
demonstrating CT-based segmentation of bone marrow
activity.! An iterative Hounsfield unit threshold was applied,
followed by a morphological closing algorithm. Global
SUVmean was calculated as the average SUV of all voxel

Lien avec la réponse aux traitements ?
Quelle(s) différence(s) entre les

patients A+ et A-?

C ik g “ f
1 4 E therapy.?

TD (time of decision), TT (time of transfusion), M1 (1 month after CAR-T cell infusion), and M3 (3 months evaluation
after CAR-T cells infusion)

Results

The average global SUVmean before treatment
was 1.27 + 0.34 (range 0.84 to 2.39). whereas
the average after treatment was 1.15 + 0.29
(range 0.69 to 2.82).

The average change was -0.13 + 0.36 (range -
1.55 to 1.01) (p= 0.003). The calculated global
SUVmean uptake decreased after initiation of
treatment in 39 (68.4%) and increased in 18
(31.6%) of the cases.

Conclusion

This study demonstrated a significant decrease in
FDG uptake from baseline to post-treatment in
the bone marrow of NHL patients who had
undergone CAR-T therapy.

This decrease in FDG uptake in the bone marrow
potentially signifies a reduction in bone marrow
tumor burden following CAR-T therapy.

I hus, global assessment of the bone marrow by
FDG PET/CT imaging is a useful tool for the
assessment of the effects of CAR-T therapy in the
bone marrow of patients with NHL.
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Objectives and Aim of W

Background: "®F-FDG PET/CT has become a crucial technique for guiding
response-adapted treatment in lymphoma patients by implementing the Deau-
ville five-point scale. FDG distribution in normal organs and neoplastic tissues
can be influenced by multiple biological and procgdural factars with intra-
patient variability in reference organs that can creathat reduces
tracer availability to other tissues thus potentially affecting the reliability of ref-
erence organs in sequential PET/CT scans.

Aim of work: To correlate the values of metabolic tumor burden (MTB)
with the standardized uptake values (SUV) in different normal reference
tissues in both the initial staging and follow-up PET/CT studies; in order
to determine the potential effect of tumor burden on established PET-CT-
based criteria for evaluating the response.
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F-FDG PET/CT sequential imaging of lymphoma patients
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- Mean values for BMI, blood glucose level, injected dose, and interval uptake
period did not significantly change between the two studies, in addition, no
changes to equipment, software, or imaging protocol were made.

. Maximum SUVs were obtained fromfreference organs (liver, blood pool, brain,

taking into consideration not to involve areas with abnormal "°F
-FDG uptake such as disease involvement, focal muscle uptake, focal athero-
sclerotic disease...etc.

- Values were correlated withfmetabolic tumor burden (MTB) (the sum of the |

ITLG values of all lesions) in each patient. |

- Patients were divided according to their response to therapy -in reference to
Deauville criteria- into 3 groups:

. Progression in 11 patients (20%).

. Regression in 37 patients (68%).

. Resolution in 6 patients (12%).

- Correlation and Comparison analyses were done between initial and fol-

low-up scans regarding the % change in MTB and % change of SUV in refer-
ence organs in each response group.
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- Correlation analysis: there was a significant negative correla-
tion between % change in MTB with % change of SUV in liver,
blood pool, brain but not in muscles.

- Comparison analysis: There was a significant difference be-
tween progression and regression groups in the % of MTB
change and % of SUV change in the liver and brain.

- There was a significant difference between progression and
resolution groups in the % of MTB change and % of SUV
change in the brain only.

- There was no significant difference between regression and

resolution groups in the % of MTB change and % of SUV
change in any of the reference organs.
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Table 1. Correlation Analysis between percent of change of metabolic tumor burden and
percent of change in SUVmax of different reference organs during **F-FDG PET/CT sequen-
tial Imaging in 54 lymphoma patients.

Metabolic Liver Blood pool Brain Muscles
Tumor SUV% change | SUV % change SUV % change SUV % change
Burden =4.79% =6.56% =8.62% =0.66%

MTB % change
= R=-0.467 R=-0.291 R=-0.417 Non Sig.
318.95% P=<0.001 P=<0.033 P=0.002
Table 2. Comparison b different groups in 54
Tn Tymphoma cases MTB Liver Blood pool Brain Muscle
% of change in:
SUVmax SUVmax | SUVmax | SUVmax
Mean 2026.826 -17.256 -19.491 -26.786 -6.852
Progression VS | difference
Regression P value <0.001 0.001 NS <0.001 NS
Mean 2033.663 -10.050 -10.770 -34.290 8.882
Progression VS | difference
P value <0.001 NS NS 0.002 NS
Mean 6.837 7.206 8.722 -7.504 15.734
Regression difference
L VS Pvalue NS NS NS NS NS

Il Folow-

Female patient, 65-year-old with a history of Non-Hodgkin lymphoma, showing marked metabolic regression after chemo-
therapy treatment.

A. MIP images of initial study (MTB=6020) and at follow-up study {MTB=34) with (% of change = -99.4%).

8. Liver; 3 cm ROl within the right lobe in initial study (SUVmax=3.1) and at follow-up study (SUVmax=3.7) with (% of
change=19.3%)

C. Mediastinal Blood Pool; 1.2 cm ROI within descending aorta in initial study (SUVmax=2.1) and at follow-up study
(SUVmax=2.8) with (% of change=33.3%)

D. Brain; 1.2 cm RO! at the right cerebellum in initial study (SUVmax=7.2} and at follow-up study (SUVmax=9) with (% of
changes25%).

F. Muscles; 1.2 cm ROI within right psoas major muscle in initial study (SUVmax=1) and at follow-up study (SUVmax=1 with (%
of changes0%).
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PURPOSE & BACKGROUND
Cardiotoxicity caused by anthracyclines, and more selective, targeted therapies, such as kinase
inhibitors and immune checkpoint inhibitors (ICIs) may give rise to irreversible myocardial injury
with significant reduction of left ventricular ejection fraction. The development of noninvasive
imaging methods for early detection and monitoring of cardiotoxicity is pivotal for the better
management of cardiac complications associated with cancer therapy. In this retrospective study,
we report the preliminary results on cardiac imaging using a novel mitochondrial-targeted ['2F]F- 2 : A
AraG PET in cancer patients undergoing immunotherapy. Fig. 2 A: Possible mechanism of ICI
cardiotoxicity. The therapeutic mechanism of
ICl is based on targeting immunosuppressive
checkpoints, such as cytotoxic T lymphocyte-
associated protein-4 (CTLA-4), programmed
cell death protein-1 (PD-1), and PD-1 ligand
(PD-L1). While activating anti-tumor T cells, ICI
can produce a series of autoimmune toxicities
resulting in the occurrence of immune-related
Fig. 1: ['8F]F-AraG, an imaging agent to visualize immune adverse events (irAEs). The exaggerated
response. ['®F]F-AraG enters T cells via nucleoside transporters ¢ A i il
and iIs trappea intraceliularly mrougn pnospnoryiauon primarily by |n1mune response agalnSt t1e cancer ce $
deoxvauanosine kinase (dGK). The key to ['8F]F-AraG's ability to antigens can also hinder the proper function of
visualize activated T cells lies in its association with mitochondrial the myocytes as Ihey share the same antigens
biogenesis mediated through the action of mitochondrial dGK. Non- PD-L1 : g di ith
invasive tracking of activated T cells may allow assessment of ( D- also exists in car lomyocytes) with
proper or aberrant immune function and enable timely treatment cancer cells resulting T cell-mediated
L Seveniens cytotoxicity, cardiomyopathy and coronary
artery disease (CAD). The infiltration of T cells
into the injured myocardial tissue may also lead
to ICl-related myocarditis, with very high
mortality rate.

ik a1 wf Anu-PD-LI
@ Actiated ot i PD-1  mf Aot-PO-1

M

Fig. 2 B: Doxorubicin-induced cardiotoxicity.
Doxorubicin-induced cardiotoxicity is the result
of the direct interference in the mitochondrial

process in the cardiomyocytes. Doxorubicin
readily enters mitochondria and interferes with
miDNA synthesis. Following phosphorylation by
dGK, [18F]F-AraG can be incorporated into
miDNA and thus report on the status of its
synthesis. It also indirectly affects cellular
process through nuclear-mediated effect such
as inhibition of topoisomerase 28 in
cardiomyocytes.
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METHODS & RESULTS

Healthy controls N X

Fig. 3: Healthy contrels. Six healthy subjects (3F,

" 3Mmean age 45 + 15 y) participated in the study.
Each subject received a bolus injection of ['®F]F-

» AraG (244 to 329 MBq) prior to PET/MR whole-
body scans (SIGNA, GE Healthcare). Dixon MRI
. was also acquired for MR-based attenuation

correction implemented in PET reconstruction
(TOF-OSEM). (Scale: 0 to 5 SUV).

Fig. 4: Pre and post ICI therapy (Cancer). Five
head-and-neck non-sauamous cancer natients
(5F, mean age 71 + 15 y) undergoing
immunotherapy (4 with nivolumab and 1, a
combination of docetaxel and cetuximab) were
investigated. Out of 5 patients, patients #1,2,3 had
paired pre and post therapy of ['®F]F-AraG scans
while patient #4 had only pre and patient #5 had
post therapy F-AraG scans. The whole-body PET
data were acquired with PET/CT (3 patients with
Siemens Biograph mCT 128 and 2 with GE
Discovery MI) each at approximately 60 min after
the injection of a single dose (134-324 MBq) of
['8F)F-AraG . Post therapy scans were performed
3 to 4 weeks after the first course of ICl therapy.
CT-based attenuation correction was implemented
in PET reconstruction (Scale: 0-10 SUV)

LITO 21
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Fig. 6: ['"®F]F-AraG comparison. The difference in the mean SUV between healthy controls and
cancer patients are highly significant (SUVmean = 3.02 + 0.73 vs. 6.6 = 1.13 (pre-ICl) and 6.16 +
Fig. : ['®F]F-AraG myocardial uptake. The extent of uptake of ['¥F]F-AraG in the myocardium 0.55 (post-ICl) , p<0.001). However, the pre and post ICI therapy groups did not show any
was evaluated semi-quantitatively by drawing ROl and calculating the mean standardized uptake significant difference (p=0.56). The observed higher signal in the cancer patients may be due to
value (SUV) of the total left ventricle myocardium. Healthy controls (HC) (Fig. 4) represent non- cardiotoxicity of the previous cancer therapy or cancer itself, as it is a systemic disease that could
cancer patients with no known or documented heart diseases. The cancer patients (Fig. 5), who be affecting the myocardial function.
have been previously treated with chemotherapy, demonstrated elevated level of of ['*F|F-AraG
uptake in the myocardium both in pre and post ICI therapies (b, ¢) compared to HC (a). Higher
myocardial uptake of ['®F]F-AraG in cancer patients may indicate potential mitochondrial a) (b) Fig. 7: Representative trans-axial images of
dysfunction in the myocytes and/or T cell infiltration. ; sex-, age- and BMI-matched cancer patient
(a) and healthy subject (b). The observed
difference inage (71+15yvs. 45+ 15y)
and BMI (28 = 12 kg/m2 vs. 25 = 5 kg/m2)
between cancer and healthy controls might
have contributed the difference in SUVs.
However, the age- and BMI-matched (F, 51y,
H A 18kg/m2) and (F, 55y, 19 kg/m2)) individuals
S U VS p re_t ra Ite m e nt ¢ S UVS CO nt ro | es havg also shown theysigniﬂ?:am difference in
SUVs between cancer patients and healthy

Prendre des pts a baseline controls. (mean SUV = 10.03 vs. 3.03)
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(a) Healthy Control (b) Cancer SUV Max {c) Cancer SUV Mean
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Fig. : ['®F]F-AraG myocardial uptake. The extent of uptake of ['¥F]F-AraG in the myocardium
was evaluated semi-quantitatively by drawing ROl and calculating the mean standardized uptake
value (SUV) of the total left ventricle myocardium. Healthy controls (HC) (Fig. 4) represent non-
cancer patients with no known or documented heart diseases. The cancer patients (Fig. 5), who
have been previously treated with chemotherapy, demonstrated elevated level of of ['*F|F-AraG
uptake in the myocardium both in pre and post ICI therapies (b, ¢) compared to HC (a). Higher
myocardial uptake of ['®F]F-AraG in cancer patients may indicate potential mitochondrial
dysfunction in the myocytes and/or T cell infiltration.

CONCLUSIONS

Our preliminary results show that the noninvasive detection of myocardial dysfunction in patients
undergoing cancer therapies is feasible using ['®F]F-AraG PET. This imaging method may overcome
the inability of currently used methods such as echocardiography to detect subclinical cardiac
involvement in cancer therapy for better management of possible cardiac complications. Further study
is needed to evaluate whether T cell infiltration or damage to mitochondria-rich myocytes alone is
responsible for the the underlying mechanism of cardiotoxicity in cancer therapy. Moreover, cancer
itself is a systemic disease and could affect the myocardial function.

SUV Max SUV Mean

- A=

HC wPre IC) mPost iCI 2 HC wFre |C| wPast ICI

Fig. 6: ['"®F]F-AraG comparison. The difference in the mean SUV between healthy controls and
cancer patients are highly significant (SUVmean = 3.02 + 0.73 vs. 6.6 = 1.13 (pre-ICl) and 6.16 +
0.55 (post-ICl) , p<0.001). However, the pre and post ICl therapy groups did not show any
significant difference (p=0.56). The observed higher signal in the cancer patients may be due to
cardiotoxicity of the previous cancer therapy or cancer itself, as it is a systemic disease that could
be affecting the myocardial function.

Fig. 7: Representative trans-axial images of
sex-, age- and BMI-matched cancer patient
(a) and healthy subject (b). The observed
difference inage (71+15yvs. 45+ 15y)
and BMI (28 = 12 kg/m2 vs. 25 = 5 kg/m2)
between cancer and healthy controls might
have contributed the difference in SUVs.
However, the age- and BMI-matched (F, 51y,
18kg/m2) and (F, 55y, 19 kg/m2)) individuals
have also shown the significant difference in
SUVs between cancer patients and healthy
controls. (mean SUV = 10.03 vs. 3.03).




A Novel Mitochondrial-Targeted ['®F]F-AraG Positron Emission Tomography (PET) Biomarker for Early Diagnosis and Monitoring of Cardiotoxicity

L@ Department of Radiology
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PURPOSE & BACKGROUND

Care icity caused by anthi lines, and more sels

Uttam M. Shrestha, PhD’, Jelena Levi, PhD? Heedon Chae, PhD?, Joseph Blecha, PhD', Henry VanBrocklin, PhD’, John Sunwoo, MD?, A. Dimitrios Colevas, MD?, Youngho Seo, PhD'

Y

, targeted ies, such as kinase

inhibitors and immune checkpoint inhibitors (ICIs) may give rise to irreversible myocardial injury
with significant reduction of left vemncular ejection fraction. The development of noninvasive

imaging methods for early and of

is pivotal for the better

of cardiac licati i with

cancer therapy. In this retrospective study,

we report the preliminary results on cardiac imaging using a novel mitochondrial-targeted ['8F]F-
AraG PET in cancer patients undergoing immunotherapy.

and interventions.

Fig. 2 A: Possible mechanism of ICI
cardiotoxicity. The therapeutic mechanism of
ICl is based on targeting immunosuppressive
checkpoints, such as cytotoxic T lymphocyte-
associated protein-4 (CTLA-4), programmed
cell death protein-1 (PD-1), and PD-1 ligand
(PD-L1). While activating anti-tumor T cells, ICI
can produce a series of autoimmune toxicities
resulting in the occurrence of immune-related
adverse events (irAEs). The exaggerated
immune response against the cancer cell
antigens can also hinder the proper function of
the myocytes as they share the same antigens
(PD-L1 also exists in cardiomyocytes) with
cancer cells resulting T cell-mediated
cytotoxicity, cardiomyopathy and coronary
artery disease (CAD). The infiltration of T cells
into the injured myocardial tissue may also lead
to ICl-related myocarditis, with very high
mortality rate.

A Novel Mitochondrial-Targeted ['*F]F-AraG Positron

Fig. 1: ['"*F]F-AraG, an imaging agent to visualize inmune
response. [**F]F-AraG enters T cells via nucleoside transporters
and is trapped intracellularly through phosphorylation primarily by
deoxyguanosine kinase (dGK). The key to ['8F]F-AraG's ability to
visualize activated T cells lies in its association with mitochondrial
biogenesis mediated through the action of mitochondrial dGK. Non-
invasive tracking of activated T cells may allow assessment of
proper or aberrant immune function and enable timely treatment

Fig. 2 B: Doxorubicin-induced cardiotoxicity.
Doxorubicin-induced cardiotoxicity is the result
of the direct interference in the mitochondrial

process in the cardiomyocytes. Doxorubicin
readily enters mitochondria and interferes with
mtDNA synthesis. Following phosphorylation by
dGK, [18F]F-AraG can be incorporated into
mtDNA and thus report on the status of its
synthesis. It also indirectly affects cellular
process through nuclear-mediated effect such
as inhibition of topoisomerase 28 in
cardiomyocytes.

(PET) for Early Di:

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA

2CellSight Technologies, Inc., San Francisco, CA, USA
#Stanford School of Medicine, Stanford, CA, USA.

METHODS & RESULTS
Healthy controls .
1 2 Fig. 3: Healthy controls. Six healthy subjects (3F,
3M mean age 45 + 15 y) participated in the study.
-y » > 3 Each subject received a bolus injection of ['3F]F-
“‘ * . i AraG (244 to 329 MBq) prior to PET/MR whole-
" 4 body scans (SIGNA, GE Healthcare). Dixon MRI
. was also acquired for MR-based attenuation
correction implemented in PET reconstruction
(TOF-OSEM). (Scale: 0 to 5 SUV).

Pre-ICl therapy

3 Fig. 4: Pre and post ICl therapy (Cancer). Five
1a ‘& 2a 3a 4a

head-and-neck non-squamous cancer patients
(5F, mean age 71 + 15 y) undergoing
|mmunotherapy (4 with nivolumab and 1,a

cor and were
investigated. Oul of 5 patients, patients #1,2,3 had
paired pre and post therapy of ['®F]F-AraG scans
while patient #4 had only pre and patient #5 had
post therapy F-AraG scans. The whole-body PET
data were acquired with PET/CT (3 patients with
Siemens Biograph mCT 128 and 2 with GE
Discovery MI) each at approximately 60 min after
J the injection of a single dose (134-324 MBq) of

% ['®F]F-AraG . Post therapy scans were performed
3 to 4 weeks after the first course of lC| therapy.
CT-based was i ted
in PET reconstruction (Scale: 0-10 SUV).

10" F 2b 3b
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(a) Healthy Control
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Fig. : ['®F]F-AraG myocardial uptake. The extent of uptake of ['®F]F-AraG in the myocardium
was evaluated semi-quantitatively by drawing ROl and calculating the mean standardized uptake
value (SUV) of the total left ventricle myocardium. Healthy controls (HC) (Fig. 4) represent non-
cancer patients with no known or documented heart diseases. The cancer patients (Fig. 5), who
have been previously treated with chemotherapy, demonstrated elevated level of of [*F]F-AraG
uptake in the myocardium both in pre and post ICI therapies (b, ¢) compared to HC (a). Higher
myocardxal uptake of ['®F]F-AraG in cancer pa(lenls may indicate potential mitochondrial

ion in the myocytes and/or T cell infi

of Cardi ity (June 25, 2023)

The study was supported in part by the National Institutes of Health under grants RO1 HL160688-01
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SUV Max SUV Mean

HC wPro IC1 mPost i *HC wPre I wPast ICI
Fig. 6: ['®F]F-AraG comparison. The difference in the mean SUV between healthy controls and
cancer patients are highly significant (SUVmean = 3.02 + 0.73 vs. 6.6 = 1.13 (pre-ICl) and 6.16 =
0.55 (post-ICl) , p<0.001). However, the pre and post ICI therapy groups did not show any
significant difference (p=0.56). The observed higher signal in the cancer patients may be due to
cardiotoxicity of the previous cancer therapy or cancer itself, as it is a systemic disease that could
be affecting the myocardial function.

Fig. 7: Representative trans-axial images of

‘T‘F 3 sex-, age- and BMI-matched cancer patient
(a) and healthy subject (b). The observed
¢ B difference in age (71 + 15y vs. 45+ 15y)
L [ and BMI (28 = 12 kg/m2 vs. 25 = 5 kg/m2)

e between cancer and healthy controls might

have contributed the difference in SUVs.
However, the age- and BMI-matched (F, 51y,
18kg/m2) and (F, 55y, 19 kg/m2)) individuals
have also shown the significant difference in
SUVs between cancer patients and healthy
controls. (mean SUV = 10.03 vs. 3.03).

CONCLUSIONS

Our preliminary results show that the noninvasive detection of myocardial dysfunction in patients
undergoing cancer therapies is feasible using [*F]F- AraG PET. This imaging method may overcome
the inability of currently used methods such as phy to detect inical cardiac
involvement in cancer therapy for better management of possible cardiac complications. Further study
is needed to evaluate whether T cell infiltration or damage to mitochondria-rich myocytes alone is

[{ for the the of in cancer therapy. Moreover, cancer
itself is a systemic disease and could affect the myocardial function.
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Overview

* Radiomics involves the high-throughput extraction a multitude of features from
diagnostic medical images which can then be used to predict treatment response
and enable disease prognostication.

r * Deep learning

 Handcrafted
radiomics:
Predefined
feature
representations
fed into a ML
model that
predict an
outcome

radiomics: Neural
network trained
to discover new
features
representations
that accurately
predict an
outcome

Should Deep Learning Replace Radiomics?




Overview

* Radiomics involves the high-throughput extraction a multitude of features from
diagnostic medical images which can then be used to predict treatment response
and enable disease prognostication.

* Handcrafted * Deep learning
radiomics: radiomics: Neural
Predefined ANl D ‘ g LOING/ network trained

feature A2l Y to discover new

representations **_,;f{‘;'f,“‘":.ﬁ i R 4 ,_szﬁg features

fed into a ML BANG/. & o XURFE - representations
model that X PL ST f(»f “that accurately
predict an T predict an

outcome outcome
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Radiomics with Feature Handcrafting

¥
~ A physician identifies a
retrospective cohort for
an Al study based upon
——> | indication, treatment,

-~

p
Scans and reports
uploaded to picture
archiving and

( Patient receives
multiple radiology

-
DICOM imaging data for

cohort are curated and
optionally annotated by

' Imaging and clinical )

data are anonymized
and securely

— . . .
315::;'222;5 communication outcome information ;ii;?ﬁgﬁ;gg:?éogfl itl?nical transferred to Al
= ) | System ) and/or availability of and/citeome information L researchers )
| imaging data \
1 3 l ]
Radiomics Al approach
Texture
Intensity and tumour Peritumoural ~ Radiomicsof  Tumour vessel Feature
statistics heterogeneity radiomics tumour shape radiomics selection ML model

Outcome prediction Prognosis

* Response * OS

¢ Benefit from therapy * RFS and PFS

* Adverse events ¢ Escalation or de-escalation

* Confounder versus of therapy
| true progression e Prioritization for clinical
L trials

P
| Radiogenomics
* Actionable mutations
* Molecular assays
e Serial updates to molecular
biomarkers
¢ Elucidate biological rationale for
imaging Al-based biomarkers

Bera K, Nat Rev Clin Oncol. 2022



Radiomics with Deep Learning

Patient receives
multiple radiology
assessments

during care

A physician identifies a
retrospective cohort for
an Al study based upon

—— | indication, treatment,
outcome information
and/or availability of
imaging data

Scans and reports
uploaded to picture
archiving and
communication
system

—_—

DICOM imaging data for
cohort are curated and
optionally annotated by
radiologist; oncologists
compile database of clinical
and outcome information

Imaging and clinical
data are anonymized
—| and securely
transferred to Al
researchers

Input
2Dor3D
image data

Deep learning Al approach
Convolutional layers

Fully connected layers
—— [JI80% response

7 [[]20% non-response

Predict

J

Outcome prediction Prognosis

* Response * OS

* Benefit from therapy * RFS and PFS

¢ Adverse events ¢ Escalation or de-escalation

* Confounder versus of therapy
true progression * Prioritization for clinical
trials

I 1

Radiogenomics

* Actionable mutations

* Molecular assays

e Serial updates to molecular
biomarkers

* Elucidate biological rationale for
imaging Al-based biomarkers

Bera K, Nat Rev Clin Oncol. 2022



Should Deep Learning Replace Radiomics?

Interesting to see that none of
her examples was from Nuc
Med !

Joyita Dutta, PhD
University of Massachusetts Amherst



Argument 1: Higher Accuracies with Deep Features

a Convolutional neural network

Input
2D or 3D image data

that can be stacked to learn
complex visual patterns

' deep-feature volume or estimation

| deep features into
| non-image output and

| predictions

= l I il - t
- i S | | =-ie
[ \ | [ ——
; ! : % | /
LV ' ! T
Convolutional layers :i Pooling Fully connected layers Output
Trainable image operations ' 1 Downsamples ! Translate CNN-extracted Non-image prediction, categorization

I
Prediction |
Estimated treatment end point (such as |
response versus non response) |
Prognosis |
Score or subgroups to stratify patients |
by risk |
Classification i
Clinical categories with distinct !
phenotype and/or genotype :

Regression
Continuous physiological measurement

b T |

b Fully convolutional network

Features

'l“l1“
N iR

Input Output Output

2D or 3D image data Image or volume Non-image categorization, .
preclictio% or estgilmation Bera K, Nat Rev Clin Oncol. 2022



Argument 1: Examples

* End-to-end apﬁroach predicting
neoadjuvant chemoradiation
treatment (nCRT) response in
patients with locally advanced
rectal cancer (LARC

Handcrafted and DL-based
features were extracted from
the apparent diffusion
coefficient (ADC) map of the
DW!I using conventional
computer-aided diagnosis
methods and a pre-trained
convolution neural network,
respectively.

Least absolute shrinkage and
selection operator (LASSO)-
logistic regression models were
constructed using extracted
features for predicting
treatment response.
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Figure 3. (a) Boxplots of the AUC results of 20 cross-validation repetitions for the handcrafted and DL-based classifiers. The
minimum (bottom line), 25th percentile (bottom of the box), median (central line), 75th percentile (top of the box), and
maximum (top line) are shown. An outlier is drawn as a diamond sign. (b) The ROC curves for two classifiers in predicting good
response versus non-good response using repeated stratified 4-fold cross-validation. AUC results are averaged over 20 X 4 testing

sets.

DL-based features extracted from pre-treatment DWIs achieved significantly
better classification performance compared with handcrafted features for
predicting nCRT response in patients with LARC.

Fu J. et al.. Physics in Medicine and Biology. 2020



Argument 1: Examples

* End-to-end approach
predicting axillary lymph
node (ALN) metastasis using
breast ultrasound

* |Investigation on the value of
both intratumoral and
peritumoral regions in ALN
metastasis prediction

e 479 breast cancer patients
with 2,395 breast ultrasound
images

* CNNs were built using
DenseNet, and handcrafted
radiomics models were built
using random forest

* CNNs led to consistently

higher SUVs than handcrafted
radiomics.

CNN - Training

‘?06 2]
=
‘n
=
$0.4E
- = == = reference line
o Combined 0.957
i Peritumor 0.944
------- Intratumor 0.937
o . . A
0 0.2 0.4 0.6 0.8 1
1-specificity

Handcrafte

C 1 5 ’V
0.8
206
=
.“5
c
3 0.4f
- - == = reference line
o Combined 0.940 | |
2§ Peritumor 0.920
------- Intratumor 0.913
] . . ) )
0 0.2 0.4 0.6 0.8 1
1-specificity

- = = = reference line
Combined 0.912

0.2 Peritumor 0.775 | |
"""" Intratumor 0.748
0 . . ’ A
0 0.2 0.4 0.6 0.8 1
1-specificity

Handcrafted Radiomics - Validation
D 1 ' ;

= = = = reference line
Combined 0.886 |

0.2 Peritumor 0.724
------- Intratumor 0.693
] . . X .
0 0.2 0.4 0.6 0.8 1

1-specificity

Sun Q. et al. Frontiers in Oncology. 2020



Argument 2: Segmentation-Free Analysis

* Neural networks have the
potential to automatically identify
the parts of the image that are
most relevant for the task of
interest thus obviating the need
for a separate and isolated
segmentation step prior to
analysis, in contrast to handcrafted
features where an area of interest
needs to be specified for feature
extraction

Imaging Segmentation of single (multiple) images

MR

Feature-based method ‘

Feature Extraction

Feature Selection
Supervised Unsupervised
Filter: Spearman Correlation-based  PCA
Wrapper: SVM-RFE tSNE

Embedded: LASSO

4

Model Construction

/ Classification \

Unsupervised
(clustering)

Supervised Cox Regression

Logistic Regression Random Survival

Support Vector Machines Hierarchal clustering  Forests

Random Forests K-means /Fuzzy cmean

Neural Networks

Actuarial Analysis

T

>

' Featureless method

Feature Extraction
h Deep features

®
® o
® o

®
~
Model Construction

Unsupervised

Autoencoder: VAE, Convolutional AE

. Restricted Boltzmann Machine
1 ; ®
Visible units : Hidden units

Deep Belief Networks

4

Prediction & Prognosis

Binary Classification: ROC, AUC

Actuarial outcome prediction: Harrel’s c-index, Kaplan-Meier Plot



Argument 2: Example

* End-to-end approach for cancer recurrence prediction

245 patients with high-grade serous ovarian cancer (HGSOC)

* Goal: To extract prognostic biomarkers from preoperative CT images for
non-invasive recurrence prediction in HGSOC.

e 3-year recurrence prediction AUCs: 0.772 and 0.825 in two validation

cohorts

A

Learn feature of HGSOC from 8917 tumor images Evaluate information capacity of feature
Encoder network™ Decoder network
A= pmm— =
E E -
g% N \/ ‘
- e
28 ‘ ‘
Eh b A
Se 8x8@ 64x64@ 64x64
16 1 Tumor image
Deen | ) L ] reconstructed
HGSOC feature learning from 102 ee'!:a::::mg 1T [I1]] 16-dimension from feature
patients without follow-up information

Cox proportional
hazard regression

b Hazard function / Hazard ratio

|'\ 3-year recurrence prediction

" Average pooling Deconvolution
Batch normalization l i - ; :
¢ 1 (window=2x2, stride=2) (kemnel size = 3x3)

Recurrence analysis
(n = 143 patients)

Recurrence analysis in 143 patients
with follow-up information
Convolution 1
(kernel size = 3x3) |/

ﬂ Global avera;

ge pooling

Wang, S. et al.. Radiother. Oncol. 2019



Argument 3: Al is Promising for Feature Discovery

* Using handcrafted features alone fails to exploit the potential of Al in
discovering novel features

* The discovery of new features could in turn further improve cancer
prognostication and treatment decisions for patients by extracting
information that is not yet considered in current workflows

‘)( A MIND ¢ M/}C,(/
SRy,

C<

/ \

N

: @

ANALYSE g H&TEST

Schneider P, Nat Rev Drug Discov. 2020



Argument 3: Examples

* In digital pathology, Al techniques have been used to identify novel features
linked to disease outcomes

Prognostic model BFSk stratification ‘ ‘ Although additional work is warranted to understand the biological significance of this feature and to
&H‘“—w ———— establish broadly reproducible TAF scoring, this work represents the first validation to date of human

expert learning from machine learning in pathology. Specifically, this validation demonstrates that a

computationally identified histologic feature can represent a human-identifiable, prognostic feature

with the potential for integration into pathology practice. ’ ’

—>

Visually similar
clusters ranked by

= ) ] model prognosis Tumor Adipose Feature (TAF)

B it ‘B . .J_,.
WP ON  — O RS R
Vb | — PR R T
: T e e

J

Unannotated images Image similarity

nework [ OpEen.

Patho|ogi5t Risk stratification Original Investigation | Pathology and Laboratory Medicine

Pathologist Validation of a Machine Learning-Derived Feature
()
—

for Colon Cancer Risk Stratification

Vincenzo Limperio, MD; Ellery Wulczyn, MS; Markus Plass, MSc; Heimo Miller, PhD; Nicold Tamini, MD; Luca Gianotti, MD; Nicola Zucchini, MD;
Robert Reihs, MS; Greg S. Corrado, PhD; Dale R. Webster, PhD; Lily H. Peng, MD, PhD; Po-Hsuan Cameron Chen, PhD; Marialuisa Lavitrano, MD, PhD;
Yun Liu, PhD; David F. Steiner, MD, PhD; Kurt Zatloukal, MD; Fabio Pagni, MD

LImperio V, JAMA Network Open. 2023



Argument 3: Examples

* In digital pathology, Al techniques have been used to identify novel features

linked to disease outcomes
‘ ‘ ...unlike classical black-box deep learning methods, MesoNet

identified regions contributing to patient outcome
prediction. Strikingly, we found that these regions are mainly
located in the stroma and are histological features
associated with inflammation, cellular diversity and
vacuolization. These findings suggest that deep learning
models can identify new features predictive of patient ”
survival and potentially lead to new biomarker discoveries.

H nawre,, .
saisse medlcme https://doi.urg/10.1038l;sEl:-;I1-9-ED§3-S3

Deep learning-based classification of
mesothelioma improves prediction
1T of patient outcome

Pierre Courtiol'®, Charles Maussion'®, Matahi Moarii', Elodie Pronier’, Samuel Pilcer!, Meriem Sefta’,
Pierre Manceron', Sylvain Toldo', Mikhail Zaslavskiy', Nolwenn Le Stang ©?, Nicolas Girard®#,
Olivier Elemento®, Andrew G. Nicholson®, Jean-Yves Blay @7, Francoise Galateau-Sallé22,

Gilles Wainrib"® and Thomas Clozel ©'8*

Survival prediction curve
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Courtial P, Nature Medicine, 2019
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Deep learning does not always outperform handcrafted radiomics!

MICCAIZ022

m Prediction of the RFS of H&N cancer patients from FDG PET/CT scans
o Training: 488 patients, Blind test: 339 patients

Maximum lesions diameter
Tobacco

Number of affected lymph nodes
BBox CT 90th percentile

Performance status
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@ PET high gray level emphasis
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And the winning team: Weight
Louis Rebaud, Thibault Escobar, Fahad Khalid, Kibrom Girum and Iréne Buvat “Head and Neck Tumor
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Andrearczyk et al, Lecture Notes in Computer Science, vol 13626, 1-30
Rebaud et al, Lecture Notes in Computer Science, vol 13626, 121-134



Handcrafted features can be biologically informed

-

=
®

a O
= %/ What about the spread of

the disease?

Cottereau et al, J Nucl Med 2021

N L h Early (I-I)/Ad d (1l Sta Median A
First Author ymphoma arly (I-l/Advanced (lI-1V) ge M:F eclan Age Main Results
Pts Variant Acc Ann Arbor (Range)
Cottereau, 95 DLBCL 0:95 53:42 46 (18-59) Dmax was 5ig|.1iﬂcan_r.ly associated with PFS and OS. The combination of MTV and Dmax
AS.[10] helped to stratify patients
Weisman, A.J. 100 HL 0:100 60:40 15.8 (5.2-21.4) Moderatg rgproducibility in the Dmax measurement between fully automated software
[14] and physicians
Cottereau, 290 DLBCL 26:264 170120 Nr (60-80) SDmax was signiﬁcanfly asspciated with PFS and O5. The combination of MTV and
A5.[15] SDmax helped to stratify patients
Zhou, Y. [16] 65 HL 36:29 45:20 29 (8-72) Dmax was significantly associated with PFS and OS
Cottereau, . ) . —
AS. [17] 290 DLBCL 26:264 170:120  Nr (60-80) Comparison of different ways to calculate dissemination features
Vergote, . ) )
VEILQJD [91 8] 83 MCL 12:71 62:21 66 (58-72) Dmax was not associated with prognosis
Di ignifi I i ith PFS. Di interi lic t
Durmo, R.[19] 155 HL 7778 7976 NF max was significantly alssocn:ahed wit S. Dmax and interim metabolic treatment
response helped to stratify patients
Li, H. [20] 126 FL 22:104 63:63 53 (21-76) Dmax and TLG were significantly associated with PFS
Ceriani, L.[21] 240 DLBCL 104:136 119:121  Nr SDmax was included in a radiomics model with a prognostic value
Drees, E.E.E. 30 HL N Nr 36* (18-66) Blood-based markers, EV-miRNA, and sTARC were moderately related to dissemination
[22] features
Driessen, J. L . -
23] 105 HL Nr 47:58 30 (13-66) Good reproducibility of Dmax between 6 different segmentation methods
Eertink, J.J. )
[24] 317 DLBCL 51:266 161:156 65 (23-80) Dmaxpylk was one of the best predictors of treatment outcome
Eertink, J.J. . - ) .
(25) 296 DLBCL 48:248 152:144 65 (55-72) Dissemination features were the best predictors of progression
Girum, K.B. Dmax was significantly associated with PFS and OS. The combination of MTV and Dmax
382 DLBCL N 207175  62.1 " (34-73
[26] ' 3473 eiped to stratify patients
Dmax was significantly associated with PFS and OS. The combination of MTV and Dmax
Gong, H. [2 81  AITL 5.76 53:28 63 . .
ng, H. [27] helped to stratify patients
Dmax and end-of-treatment metabolic treatment response were significantly associated
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Xie, Y. [29] 85 PTCL 10:85 59:46 64 (16-84) Dmax and bone marrow biopsy were significantly associated with PFS and OS
Eertink, J.J. . - L ] )
[30] 323 DLBCL 77:246 185:138 63 (53-71) Baseline radiomics features were significantly associated with PFS

Albano et al, Cancers 2023
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Handcrafted features can be biologically informed
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Beyond features, radiomic models can generalize well

Prediction of relapse location after re-irradiation of H&N cancer patients from FDG PET/CT scans

Patients from Boston are well classified using

Original model designed on a cohort from Paris
exactly the same model

Dim 2 (26.79%)

Individuals - PCA @
2 i
@
@ o @
25 . :
1 L@,
Groups : @ pattelr:eld

Dim2 (26.8%)

Balanced accuracy: 84% Balanced accuracy: 79%

1
1 1 I 1 1
-2 -1 0 1 2
Dim1 (48.3%) 25
2 0 2
Dim 1 (48.30%)

Beddok et al, Eur J Nucl Med Mol Imaging 2023 Beddok et al, submitted



Handcrafted features are easier to standardize
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image biomarker standardisation initiative I
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Zwanenburg et al, Radiology 2020



Models can be explained with high spatial resolution

Deep learning activation maps Radiomic activation maps
T1c scan GradCAM whole-body
0 k|
& ~
m
.ok
g .
-

METS

Chakrabarty et al, Radiology Al 2021 Escobar et al, Med Phys 2022 Captier et al, SNMMI 2023



Leveraging deep learning for radiomics

Deep learning Radiomics

1. Decipher informative deep 2. Validate model interpretation 3. Re-engineer model to make it
features and interpret model using dedicated experiments explainable and more robust

s

Robust model and new biological/medical knowledge



Should Deep Learning Replace Radiomics?

Abhinav Jha, PhD
Washington University in St. Louis




Context for my arguments

We conducted a survey among patient-advocate groups to capture
their thoughts on machine learning for clinical-decision making*

Patients want machine learning, but to help physicians*®

*Birch et al, Nature Medicine, 2022 *Photo credit: Shutterstock



Desired properties in computer-aided tools
that can help physicians

* Tool should be reliable and reproducible
* Less burdensome for the physicians to use the tool

* The tool should complement physicians, identifying features that may

be difficult to conceive manually



Potentially more reproducible and reliable

embrace deep
learning?

Can learn from large datasets

Less burdensome for physicians and identify hidden features



Potentially more reproducible and reliable

Time to
embrace deep g
learning?

Ability to learn from large
datasets and identify hidden
features

Less burdensome for physicians



Radiomics: What are we quantifying?

The original lesion PET system Noisy sinogram Reconstruction  Reconstructed lesion image

Ideal goal: Quantify Reality: Quantify features

features of the lesion of the lesion image”

« Typically, in radiomics, we quantify features of the “image of the abnormality””.
* These features may simply arise due to noise and other image-degrading processes.
This puts a question on the biological interpretability of these features.

Eur Radiol. 2021: 31 (1) 1-4 PMCID: PMC7755615 > Eur J Nucl Med Mol Imaging. 2013 Jun;40(6):967-8. doi: 10.1007/s00259-013-2381-3.
. ’ ’ ’ ) Epub 2013 Mar 23.
Published online 2020 Aug 7. doi: 10.1007/s00330-020-07108-w PMID: 32767103
Area under the cumulative SUV-volume histogram is
A decade of radiomics research: are images really data or just patterns in the noise? not a viable metric of intratumoral metabolic

e oo - i . heterogeneity
Daniel Pinto dos Santos,®! Matthias Dietzel,2 and Bettina Baessler®

Frank J Brooks

*Barrett et al, Phys. Med. Biol. 2016



Radiomics: The sensitivity to measurement
process

* Medical image databases are heterogeneous with scanner and
imaging protocol variability

* Radiomic features: Sensitive to these variations!2

Are Al models not sensitive
to such variations?

Representative transaxial slices of the same heterogeneous lesion

measured and reconstructed by three different scanners (A) GE Discovery

MI PET/CT, (B) Mediso AnyScan PET/CT, (C) Mediso nanoScan PET/MRI*

INyflot et al, ) Med. Imag. 2016
2Pfaehlr et al, Med. Phys. 2018 *Image source: Forgacs et al, Plos One, 2019




Deep learning: Potentially more reproducible

* The heart of deep learning: Universal approximation theorem
Give me enough data, | will learn to mimic most functions

* With enough data, deep learning can potentially model
heterogeneities due to scanner and imaging protocol variability

Prediction of obstructive disease per coronary artery territory

0.8

" o g ..

O
=
JACC Cardiovasc Imaging. Author manuscript; available in PMC 2019 Nov 1. PMCID: PMCB135711 < 0.77 0.77
Published in final edited form as: NIHMSID: NIHMS939910 074 0.74 : DL
JACC Cardiovasc Imaging. 2018 Nov; 11(11): 1654-1663. PMID: 29550305 0.65 0.72 0.72
Published online 2018 Mar 14. doi: 10.1016/j,jcmg,.2018.01.020
0.6
Deep Learning for Prediction of Obstructive Disease from Fast Myocardial Perfusion LAD, n = 716/1638 [44%] LCx, n =540/1638 [33%] RCA, n = 541/1638 [33%)]

SPECT: A Multicenter Stud
y ** P < 0.001 for AUC comparison by Delong test.

: AUC (and 95% ClI) for left anterior descending (LAD), left circumflex (LCx) and
1638 patients and task , : . .
sutomation right coronary arteries (RCA) artery disease prediction by per-vessel TPD and
by deep learning using raw and quantitative perfusion polar maps.




Potentially more reproducible and reliable

embrace deep
learning?

Ability to learn from large
datasets and identify hidden
features

Less burdensome for physicians



Deep learning can be less burdensome for
physicians

Analysis with
clinical data

_LLL RF < threshold

--RF > threshold

% 10 20
Time (months)

Evaluate predictive

Quantlfylng higher-order ability

tumor features

2-year LRPF
o

Tumor
segmentation

I P

* In radiomics, burden to segment the tumor accurately may fall on the physician:
A tedious and time-consuming process that also introduces variability

* An end-to-end deep-learning approach does not require such manual
intervention: More convenient for physicians

But segmentation can now be
automated using DL !




Potentially more reproducible and reliable

embrace deep
learning?

N

Ability to learn from large
datasets and identify hidden
features

Less burdensome for physicians



Radiomic features are manually conceived,
not really hidden

Understanding Changes in Tumor Texture Indices in PET: A Comparison Between Visual
Assessment and Index Values in Simulated and Patient Data

Fanny Orlhac, Christophe Nioche, Michaél Soussan and Iréne Buvat
Journal of Nuclear Medicine March 2017, 58 (3) 387-392; DOI: https://doi.org/10.2967/jnumed.116.181859

Yes, useful for as a discovery
approach !

With deep learning, we can identify
hidden features in tumors, other
portions of images, other patient

images, and clinical data




ldentifying deep “hidden” features can also
vield improved performance

Model AUC

[mage-only CNN Intra  0.767 Deep learning could identity
pert 0850 hidden features from high-
cmb 090 dimensional large datasets that

eeeory e R would manually be challenging
i 0533 to conceive

Cmb 0.833
Not sure !

*Sun et al, Front Oncol, 2020




And then there is research on explainability

Of t h ese fe at u reS Be careful, this study does not assess the impact of
explainability

Prospective study (N = 240 patients) to assess

impact of explainable DL on physician interpretation
of myocardial perfusion SPECT images”
x;:d[;[ Imaging Results  Explainable DL prediction 3 CADDL AU 0755

§ 4 3 Readers with DL; AUC 0.779 il —
3 Readers without DL; AUC 0.747
Stress TPD; AUC 0.718
Reference *-P<0.01
*-P=0.536

1

Q Global CAD Risk prediction

=]
S
=}

&b
Stress Clinlzal
results data

T T T T T
0.00 0.25 0.50 0.75 1.00

— AUC for each of the three readers
W —¢ Aiisoailiop: PSS WS was increased when using

— .
explainable DL

Explainable Al improved physician interpretation of myocardial perfusion SPECT*

Deep learning could thus complement the physicians!
*Miller et al, J. Nuc. Med., 2022
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