
CT-free Total-body PET segmentation 
Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi

▪ Low-dose PET => CT-based PET attenuation and 
scatter correction

▪ CT est important pour l’attenuation and scatter 
correction

▪ Mais le CT ajoute une dose importante de radiation

▪ But: Segmentation multi-organes corps entier à 
partir des images PET non corrigées

▪ Première étape vers du “true CT-free PET”
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CT-free Total-body PET segmentation 
Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi

▪ 18F-FDG PET/CT corps entier de 114 patients

▪ Ground truth génerée par MOOSE sur les images CT 
images

▪ nnU-Net architecture

▪ Entraîné sur les non-attenuation and non-scatter 
corrected PET images

▪ Average DICE : 0,82

▪ Trois médecins nucléaires ont confirmé que les 
segmentations étaient fiables
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▪ Average DICE : 0,82

▪ 70% des organs ont un DICE > 0,80

▪ Mais il y en a des plus difficiles:

▪ Vessie (0,70)

▪ Thyroïde (0,69)

▪ Pancréas (0,59)

▪ Développements futurs:

▪ Délinéation manuelle des organes

▪ Données d’autres scanners
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CT-free Total-body PET segmentation 
Song Xue, Christoph Clement, Marco Viscione, Rui Guo, Axel Rominger, Biao Li, Kuangyu Shi



Louis Rebaud 4

Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

▪ Contrast-enhanced CT (ceCT): administration d’un agent de 
contraste à base d’iodine

▪ Améliore l’interprétation morphologique des lésions

▪ Améliore la délinéation des vaisseaux et des tissus mous

▪ Problèmes:

▪ Réactions allergiques

▪ Contre indiqué chez les patients avec d’insuffisances rénales ou 
de problème de thyroïde

▪ Inconfortable

▪ Plus grande dose de radiations

▪ But: déterminer l’image ceCT à partir du PET et du neCT
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger

▪ 10 patients (cross validation 8/2)

▪ Biograph Vision Quadra

▪ 2D Residual Unet model

▪ Prédiction sur les 2D axial slices
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger
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Deep learning-based synthesis of whole-body contrast-enhanced-like CT images from 
dynamic PET and low-dose CT images using long axial field-of-view PET/CT scanners
Hasan Sari, Ian L. Alberts, Clemens Mingels, Kuangyu Shi, Axel Rominger
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Nicolas



Poster 1: generate radiomic features not images

*From 45 lymphoma patients (75 responders and 
51 non-responders to neoadjuvant 
chemotherapy)

“How to Generate Real-World Synthetic Data with 
CTGAN” - Miriam Santos – TowardsDataScience



Poster 2: leverage unsupervised learning for new discoveries ?

*~16000 patients with 99mTC scintigraphy scans (4 different 
tracers, 9 centers, 10 scanners…)



Poster 3: multimodal approach and interpretation strategies

Predict malignancy for 5248 women who underwent 
breast examination (from DCE MRI exam and clinical 
data)



Retour congrès SNMMI

Julie - 07/06/2023



Objectif : étudier la corrélation entre les caractéristiques de la dissémination tumorale sur les images TEP/TDM au 18F-

FDG et la réponse au traitement du cancer du poumon non à petites cellules (NSCLC) de stade IV.

Méthodes : 

• 101 patients NSCLC: 

• Examen pré-thérapeutique TEP/TDM au 18F-FDG 

• Données cliniques : âge, sexe, statut tabagique, histologie (adénocarcinome, squameux, autres)

• Données radiomiques (lésion primaire + métastases) : SUVmax, SUVmean, TLG, MTV, TMTV, Dmax 

• Analyses de survie (courbes de Kaplan Meier + Cox) : OS, PFS

Résultats : 

↘ OS et PFS lorsque TMTV > 53 cm3 et Dmax > 48.5 cm  

#1



Objectif : étudier la corrélation entre les caractéristiques de la dissémination tumorale sur les images TEP/TDM au 18F-

FDG et la réponse au traitement du cancer du poumon non à petites cellules (NSCLC) de stade IV.

Méthodes : 

• 101 patients NSCLC: 

• Examen pré-thérapeutique TEP/TDM au 18F-FDG 

• Données cliniques : âge, sexe, statut tabagique, histologie (adénocarcinome, squameux, autres)

• Données radiomiques (lésion primaire + métastases) : SUVmax, SUVmean, TLG, MTV, TMTV, Dmax 

• Analyses de survie (courbes de Kaplan Meier + Cox) : OS, PFS

Résultats : 

↘ OS lorsque TMTV > 90 cm3 et Dmax > 28.4 cm  

(Capricorne)



Résultats:

3 scores déterminés par facteurs de risque (0, 1 ou 2):  

• Score 0 (bon pronostic) = TMTV ≤ 54cm3 et Dmax ≤ 

48.5cm

• Score 1 (pronostic intermédiaire) : TMTV > 54cm3 ou 

Dmax > 48.5cm

• Score 2 (mauvais pronostic) : TMTV > 54cm3 et Dmax > 

48.5cm



Résultats:

TMTV= 60cm3

Dmax=11.16cm

OS=51m

TMTV=35cm3

Dmax=67cm

OS=15m

TMTV=138cm3

Dmax=23.7cm

OS=22m

TMTV=307cm3

Dmax=57.9cm

OS=1m

Conclusion : la combinaison de la dissémination de la 

tumeur (Dmax) et de la charge tumorale (TMTV) permet 

d’améliorer la stratification du pronostic du NSCLC.

(Capricorne)



Objectif : déterminer la relation entre la fixation du glucose du tissu adipeux sur les images TEP/TDM au 18F-FDG et la 

survenue de métastases à distance dans le cancer du poumon non à petites cellules (NSCLC).

Méthodes : 

• 59 patients NSCLC divisés selon la présence de métastases (24 M0/ 43 M1): 

• Examen pré-thérapeutique TEP/TDM au 18F-FDG 

• Données cliniques : histologie (adénocarcinome, squameux), Ki67, BMI

• Données radiomiques (3D slicer) : SUVmax, SUVmean, SUVpeak, TLG, MTV, SUVmax_VAT/SAT, 

SUVmean VAT/SAT, VAT SUVmax/SAT SUVmax (V/S ratio), Volume VAT, Volume SAT.

Résultats : 

•  ↗ VAT SUVmax, VAT SUVmean et V/S ratio 

chez les patients M1

• ≠ significatives du VAT SUVmean entre les 

patients en surpoids/obèses (IMC > 24 kg/m²) 

et les patients avec un IMC normal (18.5-24.9 

kg/m²) (p= 0.022)
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Résultats : 

p = 0.58

p = 1.00

p = 0.45 p = 0.93

p = 0.88p = 0.27

(Capricorne)

p = 0.07

p = 0.87

p = 0.88 p = 0.90

p = 0.88p = 0.18

n = 48 n = 24 n = 64 n = 8 n = 60 n = 12

n = 11 n = 61 n = 61 n = 11 n = 62 n = 10

n = 48 n = 24 n = 64 n = 8 n = 60 n = 12

n = 11 n = 61 n = 61 n = 11 n = 62 n = 10



p = 0.2

Résultats : 

p = 0.53

p = 0.86

p = 0.67 p = 0.91

p = 0.37p = 0.35

(Capricorne)

p = 0.08

p = 0.08

Conclusion : 

• Les patients ayant des métastases présentent un SUV 

VAT et un ratio VAT/SAT plus élevé que les patients 

non métastatiques.

• La fixation du glucose de la graisse viscérale peut 

servir de biomarqueur potentiel de l'agressivité de la 

tumeur et prédire la survenue de métastases à 

distance chez les patients NSCLC.

n = 48 n = 24 n = 64 n = 8 n = 60 n = 12

n = 11 n = 61 n = 61 n = 11 n = 62 n = 10

n = 4 n = 44 n = 24



Retour congrès SNMMI - Chicago

Fanny – 6 juillet 2023
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Modèle ne remplace pas la biopsie mais la complète
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Fixer les effectifs du test set !!
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Lien avec la réponse aux traitements ?
Quelle(s) différence(s) entre les 
patients ∆+ et ∆- ?
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Tester si différence significative de 
SUVmean(organes) entre TEP0 et TEP1 
suivant le groupe de patients ? 
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SUVs pre-traitement ≠ SUVs contrôles
Prendre des pts à baseline
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?????
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Debate: Should Deep Learning 
Replace Radiomics?

Speakers:

Joyita Dutta, PhD, UMass Amherst

Irène Buvat, PhD, Institut Curie

Abhinav Jha, PhD, WashU St. Louis

Eliot Siegel, MD, UMaryland

The team thanks Fereshteh 
Yousefirizi, who could not attend 
the conference!! 



Overview

• Radiomics involves the high-throughput extraction a multitude of features from 
diagnostic medical images which can then be used to predict treatment response 
and enable disease prognostication.

• Handcrafted 
radiomics: 
Predefined 
feature 
representations 
fed into a ML 
model that 
predict an 
outcome

• Deep learning 
radiomics: Neural 
network trained 
to discover new 
features 
representations 
that accurately 
predict an 
outcome

Should Deep Learning Replace Radiomics?
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Radiomics with Feature Handcrafting

Bera K, Nat Rev Clin Oncol. 2022 



Radiomics with Deep Learning

Bera K, Nat Rev Clin Oncol. 2022 



Should Deep Learning Replace Radiomics?

Joyita Dutta, PhD
University of Massachusetts Amherst

Interesting to see that none of 
her examples was from Nuc

Med !



Argument 1: Higher Accuracies with Deep Features

Bera K, Nat Rev Clin Oncol. 2022 



Argument 1: Examples

• End-to-end approach predicting 
neoadjuvant chemoradiation 
treatment (nCRT) response in 
patients with locally advanced 
rectal cancer (LARC) 

• Handcrafted and DL-based 
features were extracted from 
the apparent diffusion 
coefficient (ADC) map of the 
DWI using conventional 
computer-aided diagnosis 
methods and a pre-trained 
convolution neural network, 
respectively.

• Least absolute shrinkage and 
selection operator (LASSO)-
logistic regression models were 
constructed using extracted 
features for predicting 
treatment response. 

Fu J. et al.. Physics in Medicine and Biology. 2020 

DL-based features extracted from pre-treatment DWIs achieved significantly 
better classification performance compared with handcrafted features for 
predicting nCRT response in patients with LARC. 



Argument 1: Examples

• End-to-end approach 
predicting axillary lymph 
node (ALN) metastasis using 
breast ultrasound 

• Investigation on the value of 
both intratumoral and 
peritumoral regions in ALN 
metastasis prediction 

• 479 breast cancer patients 
with 2,395 breast ultrasound 
images 

• CNNs were built using 
DenseNet, and handcrafted 
radiomics models were built 
using random forest 

• CNNs led to consistently 
higher SUVs than handcrafted 
radiomics. 

Sun Q. et al. Frontiers in Oncology. 2020 

CNN - Training CNN - Validation

Handcrafted Radiomics - Training Handcrafted Radiomics - Validation



Argument 2: Segmentation-Free Analysis

• Neural networks have the 
potential to automatically identify 
the parts of the image that are 
most relevant for the task of 
interest thus obviating the need 
for a separate and isolated 
segmentation step prior to 
analysis, in contrast to handcrafted 
features where an area of interest 
needs to be specified for feature 
extraction



Argument 2: Example

• End-to-end approach for cancer recurrence prediction

• 245 patients with high-grade serous ovarian cancer (HGSOC) 

• Goal: To extract prognostic biomarkers from preoperative CT images for 
non-invasive recurrence prediction in HGSOC. 

• 3-year recurrence prediction AUCs: 0.772 and 0.825 in two validation 
cohorts

Wang, S. et al.. Radiother. Oncol. 2019 



Argument 3: AI is Promising for Feature Discovery

• Using handcrafted features alone fails to exploit the potential of AI in 
discovering novel features 

• The discovery of new features could in turn further improve cancer 
prognostication and treatment decisions for patients by extracting 
information that is not yet considered in current workflows

Schneider P, Nat Rev Drug Discov. 2020



Argument 3: Examples

• In digital pathology, AI techniques have been used to identify novel features 
linked to disease outcomes

L’Imperio V, JAMA Network Open. 2023 



Argument 3: Examples

• In digital pathology, AI techniques have been used to identify novel features 
linked to disease outcomes

Courtial P, Nature Medicine, 2019

…unlike classical black-box deep learning methods, MesoNet
identified regions contributing to patient outcome
prediction. Strikingly, we found that these regions are mainly
located in the stroma and are histological features
associated with inflammation, cellular diversity and
vacuolization. These findings suggest that deep learning
models can identify new features predictive of patient
survival and potentially lead to new biomarker discoveries.



Should Deep Learning Replace Radiomics?

Irène Buvat, PhD
Institut Curie



Deep learning does not always outperform handcrafted radiomics!

Andrearczyk et al, Lecture Notes in Computer Science, vol 13626, 1-30 
Rebaud et al, Lecture Notes in Computer Science, vol 13626, 121-134

Prediction of the RFS of H&N cancer patients from FDG PET/CT scans
Training: 488 patients, Blind test: 339 patients
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Handcrafted features can be biologically informed

May 2023

Albano et al, Cancers 2023
18

What about the spread of 
the disease?

✅

✅

✅

✅

✅

✅

✅
✅

✅

✅

✅

✅

✅

✅

✅

✅

✅

Cottereau et al, J Nucl Med 2021
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Handcrafted features can be biologically informed

Jimenez-Sanchez et al, PNAS 2021

Jimenez-Sanchez et al, PNAS 2021

Hovhannisyan et al, SNMMI 2023



Beyond features, radiomic models can generalize well

Beddok et al, Eur J Nucl Med Mol Imaging 2023 Beddok et al, submitted

Original model designed on a cohort from Paris Patients from Boston are well classified using 
exactly the same model

Prediction of relapse location after re-irradiation of H&N cancer patients from FDG PET/CT scans

Balanced accuracy: 84% Balanced accuracy: 79% 



Handcrafted features are easier to standardize

Zwanenburg et al, Radiology 2020



Models can be explained with high spatial resolution

Chakrabarty et al, Radiology AI 2021 Escobar et al, Med Phys 2022

Deep learning activation maps Radiomic activation maps 

Captier et al, SNMMI 2023

local

whole-body



Leveraging deep learning for radiomics

Robust model and new biological/medical knowledge

Deep learning

2. Validate model interpretation 
using dedicated experiments

1. Decipher informative deep 
features and interpret model

explainable

3. Re-engineer model to make it 
explainable and more robust

Radiomics



Should Deep Learning Replace Radiomics?

Abhinav Jha, PhD
Washington University in St. Louis



Context for my arguments

*Photo credit: Shutterstock*Birch et al, Nature Medicine, 2022

We conducted a survey among patient-advocate groups to capture 
their thoughts on machine learning for clinical-decision making*

Patients want machine learning, but to help physicians*



Desired properties in computer-aided tools 
that can help physicians

• Tool should be reliable and reproducible

• Less burdensome for the physicians to use the tool

• The tool should complement physicians, identifying features that may 

be difficult to conceive manually



Time to 
embrace deep 

learning?

Potentially more reproducible and reliable

Can learn from large datasets 
and identify hidden features

Less burdensome for physicians



Time to 
embrace deep 

learning?

Potentially more reproducible and reliable



Radiomics: What are we quantifying?
The original lesion Noisy sinogram Reconstructed lesion image

Ideal goal: Quantify 
features of the lesion

• Typically, in radiomics, we quantify features of the “image of the abnormality”*. 
• These features may simply arise due to noise and other image-degrading processes. 

This puts a question on the biological interpretability of these features. 

Reality: Quantify features 
of the lesion image*

PET system Reconstruction

*Barrett et al, Phys. Med. Biol. 2016

Not in AI ?



Radiomics: The sensitivity to measurement 
process

• Medical image databases are heterogeneous with scanner and 
imaging protocol variability

• Radiomic features: Sensitive to these variations1,2

*Image source: Forgacs et al, Plos One, 2019

Representative transaxial slices of the same heterogeneous lesion
measured and reconstructed by three different scanners (A) GE Discovery 

MI PET/CT, (B) Mediso AnyScan PET/CT, (C) Mediso nanoScan PET/MRI*
1Nyflot et al, J Med. Imag. 2016
2Pfaehlr et al, Med. Phys. 2018

Are AI models not sensitive 
to such variations?



Deep learning: Potentially more reproducible
• The heart of deep learning: Universal approximation theorem

Give me enough data, I will learn to mimic most functions

• With enough data, deep learning can potentially model 
heterogeneities due to scanner and imaging protocol variability

AUC (and 95% CI) for left anterior descending (LAD), left circumflex (LCx) and 
right coronary arteries (RCA) artery disease prediction by per-vessel TPD and 
by deep learning using raw and quantitative perfusion polar maps.

1638 patients and task 
automation



Time to 
embrace deep 

learning?

Less burdensome for physicians



Deep learning can be less burdensome for 
physicians

• In radiomics, burden to segment the tumor accurately may fall on the physician: 
A tedious and time-consuming process that also introduces variability

• An end-to-end deep-learning approach does not require such manual 
intervention: More convenient for physicians

But segmentation can now be 
automated using DL !



Time to 
embrace deep 

learning?

Ability to learn from large 
datasets and identify hidden 

features



Radiomic features are manually conceived, 
not really hidden

With deep learning, we can identify 
hidden features in tumors, other 
portions of images, other patient 

images, and clinical data

Yes, useful for as a discovery 
approach !



Identifying deep “hidden” features can also 
yield improved performance

*Sun et al, Front Oncol, 2020

Deep learning could identify 
hidden features from high-

dimensional large datasets that 
would manually be challenging 

to conceive

Not sure ! 



And then there is research on explainability
of these features

Prospective study (N = 240 patients) to assess 
impact of explainable DL on physician interpretation 

of myocardial perfusion SPECT images*

AUC for each of the three readers 
was increased when using 

explainable DL

Explainable AI improved physician interpretation of myocardial perfusion SPECT*

*Miller et al, J. Nuc. Med., 2022

Deep learning could thus complement the physicians!

Be careful, this study does not assess the impact of 
explainability
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