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1. Introduction: predict the outcome of metastatic non-small
cell lung cancer patients treated by immunotherapy
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Lung cancer in France

« Lung cancer is the first cause of cancer-related death in France

« The most frequent type, non-small cell lung cancer (NSCLC) is diagnosed at a metastatic
stage in about 70% of the patients
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Standard-of-care still needs to be optimized

« Only 45-50% of patients present an objective response to anti PD-1/L1 immunotherapy

« The duration of response remains highly variable and only 40% of the patients are alive
at 2 years
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proposed for the response to immunotherapy
(e.g TMB, PD-L1 expression, lymphocytic
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 They are highly suboptimal and not always
reliable.
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Heterogeneity of expression of PD-L1 and variation with antibody use
(Maclaughlin et al. 2016).
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Supervised Machine Learning for biomarker discovery

« Build a function f which takes as input baseline variables and predicts the patient’s outcome

« We want f to minimize the error between the predicted outcome and the true observed one
for all the patients of our cohort
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Supervised Machine Learning for biomarker discovery

« Build a function f which takes as input baseline variables and predicts the patient’s outcome

« We want f to minimize the error between the predicted outcome and the true observed one
for all the patients of our cohort
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e . Linear classifier
I f(x1,%X2) = Bo + B1x1 + B2xz =7

0 Learn how to optimally combine known biomarkers (e.g f(PDL1, TMB))
@ Discover and integrate new informative features

9 Make new hypotheses on the mechanisms modulating treatment response
and motivate further experiments
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TIPIT: multimodal Machine Learning for powerful predictions

* A wide variety of data modalities can now be collected for many patients at baseline
* They offer complementary views of the disease at different scales (molecular, tissular, whole-body...)

* Integrating all these modalities together may lead to more powerful/accurate biomarkers
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Outline

1. Introduction: predict the outcome of metastatic non-small
cell lung cancer patients treated by immunotherapy

2. Unimodal approaches: extract relevant features from each
modality

3. Multimodal approach: handle missing modalities with late
fusion strategies
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Medical imaging data & radiomics analyses

18F-FDG PET scans characterize the molecular heterogeneity of each metastasis as well
as the spread of the disease in the whole-body
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18F-FDG PET scan at baseline for a metastatic NSCLC
patients. Segmentation and annotation of each lesion Extraction of radiomic features for machine learning (at the lesion and the whole-body levels)
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H&E pathological slides & pathomics analyses

H&E slides from a diagnostic biopsy of a NSCLC patient
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H&E pathological slides & pathomics analyses

1. Automatic detection and " :
annotation of different cell types | . s
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H&E slides from a diagnostic biopsy of a NSCLC patient Extraction of pathomics features for machine learning. lllustration with a breast cancer slide with
lymphocytes (green), connective cells (blue) and neoplastic cells (red) (Marvin Lerousseau)
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2. Extraction of descriptive
and interpretable features

Extraction of pathomics features for machine learning. lllustration with a breast cancer slide with
lymphocytes (green), connective cells (blue) and neoplastic cells (red) (Marvin Lerousseau)
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Bulk RNAseq: handle highly dimensional data

Solid biopsy of one
patient

Genes

v

110 samples

* Liao et al. Nature Communications 2022
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Bulk RNAseq: handle highly dimensional data

Solid biopsy of one
patient

Genes

1. Expression of specific oncogenes

~ 2 X 10* protein-coding genes

v

Extraction based
‘on prior knowledge

110 samples

2. Estimation of the proportion of
immune cell types in each sample

* Liao et al. Nature Communications 2022

EGFR

T cells

B cells
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Late fusion strategy:. aggregate unimodal predictions

« Need multimodal models that could be trained without all the modalities for each patient

« If a new patient does not have all the modalities available, we still want to make a
prediction
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Prediction of the survival at 1 year ( binary classification)

Does adding other modalities to the clinical data, whenever they are available, improve the
prediction of the death before 1 year ?
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Prediction of the survival at 1 year ( binary classification)

Does adding other modalities to the clinical data, whenever they are available, improve the
prediction of the death before 1 year ?
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Conclusions & perspectives

« Adding available modalities to clinical data improve the prediction of the patient’s outcome
(both for Overall Survival and Progression-Free Survival).
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Conclusions & perspectives

« Adding available modalities to clinical data improve the prediction of the patient’s outcome
(both for Overall Survival and Progression-Free Survival).

It shows the potential of multimodal strategies to build powerful predictors for the

prognosis of metastatic lung cancer patients that may also be predictive of the response to
immunotherapy.

1. Collect more data to increase the number of patients with complete profiles (i.e 4
modalities collected).

2. Collect new modalities (mutation data, multiplex imaging, Visium spatial transcriptomics)
to gain more biological insights on the mechanisms that drive patient’s response.

3. Explore and design new features for the different modalities to use their full potential.
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