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Standard-of-care for advanced NSCLC in Europe
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• The duration of response remains highly variable and only 40% of the patients are alive 

at 2 years

• Some straightforward predictors have been 

proposed for the response to immunotherapy 

(e.g TMB, PD-L1 expression, lymphocytic 

infiltrates…)

• They are highly suboptimal and not always 

reliable.

Heterogeneity of expression of PD-L1 and variation with antibody use 

(Maclaughlin et al. 2016).
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Supervised Machine Learning for biomarker discovery

• Build a function 𝑓 which takes as input baseline variables and predicts the patient’s outcome

• We want 𝑓 to minimize the error between the predicted outcome and the true observed one 

for all the patients of our cohort 

f x1, x2 = ෠β0 + ෠β1𝑥1 + ෠β2𝑥2 = ො𝑦

Linear classifier

❶ Learn how to optimally combine known biomarkers (e.g 𝑓 𝑃𝐷𝐿1, 𝑇𝑀𝐵 )

❷ Discover and integrate new informative features

❸ Make new hypotheses on the mechanisms modulating treatment response
and motivate further experiments
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TIPIT: multimodal Machine Learning for powerful predictions
• A wide variety of data modalities can now be collected for many patients at baseline

• They offer complementary views of the disease at different scales (molecular, tissular, whole-body…)

• Integrating all these modalities  together may lead to more powerful/accurate biomarkers
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Medical imaging data & radiomics analyses

18F-FDG PET scans characterize the molecular heterogeneity of each metastasis as well 

as the spread of the disease in the whole-body

Extraction of radiomic features for machine learning (at the lesion and the whole-body levels)
18F-FDG PET scan at baseline for a metastatic NSCLC 

patients. Segmentation and annotation of each lesion
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H&E pathological slides & pathomics analyses

1. Automatic detection and 

annotation of different cell types

Density of immune cells

Density of connective cells 

surrounding tumor cells

…

2. Extraction of descriptive 

and interpretable features

samples

H&E slides from a diagnostic biopsy of a NSCLC patient Extraction of pathomics features for machine learning. Illustration with a breast cancer slide with 

lymphocytes (green), connective cells (blue) and neoplastic cells (red) (Marvin Lerousseau)
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~ 2 × 104 protein-coding genes
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1. Expression of specific oncogenes

KRAS

EGFR

…

…

2. Estimation of the proportion of 

immune cell types in each sample

T cells

B cells

Solid biopsy of one 

patient

Extraction based 

on prior knowledge

*

* Liao et al. Nature Communications 2022
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Prediction of the survival at 1 year ( binary classification)

Does adding other modalities to the clinical data, whenever they are available, improve the 

prediction of the death before 1 year ? 

ROC AUC scores of different multimodal combinations averaged over 100 experiments

Kaplan-Meier curves comparing the two predicted classes (clinical model vs multimodal model)
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• Adding available modalities to clinical data improve the prediction of the patient’s outcome 

(both for Overall Survival and Progression-Free Survival).

• It shows the potential of multimodal strategies to build powerful predictors for the 

prognosis of metastatic lung cancer patients that may also be predictive of the response to 

immunotherapy.

1. Collect more data to increase the number of patients with complete profiles (i.e 4 

modalities collected).

2. Collect new modalities (mutation data, multiplex imaging, Visium spatial transcriptomics) 

to gain more biological insights on the mechanisms that drive patient’s response.

3. Explore and design new features for the different modalities to use their full potential.
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