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TIPIT project — multimodal predictions in NSCLC

Can we use multimodal supervised Machine Learning to build new powerful and
interpretable biomarkers for the response to immunotherapy for metastatic NSCLC
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*Like many terms in Machine Learning “multimodality” is used for a lot of different things and by a lot of

different people
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The difficult challenge of building a multimodal cohort

Anonymization
(octolD)

Quality of remaining X "';g '
tumor material ? @§ J—‘
——————————— » New modalities

(e.g. spatial transcriptomics) ?

The extraction pipeline is composed of many steps and obstacles we do not have much impact on
them
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A more realistic use of Machine Learning in the TIPIT project

« With all the patients treated with immunotherapy, we cannot assess whether each
patient benefitted from the treatment or not.

« We are more likely to build prognostic biomarkers (independent from the treatment)
than predictive biomarkers

Overall survival Progression-Free survival
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The predictiveness of our models should be assessed in further experiments (e.g clinical trials)
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Outlines

2. A basic example of multimodal Machine
Learning with TCGA
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A late fusion scheme for TCGA adenocarcinoma patients

Can we predict the overall survival (OS) of 460 TCGA patients from transcriptomic data,
pathological slides (both extracted from solid biopsies) and clinical data ?
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Combine hyperparameter tuning and cross-validation

Data set : train - test split 1 Data set : train - test split K
1) Hyperparameter tuning 1) Hyperparameter tuning
[ Train [ Test | Train |
) _ 3) Test performance 3) Test performance
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model | e o o model
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2) Training classifier é"D},_p 2) Training classifier gD
I

» The final result gives us and estimate of the performance we could get if we perform

hyperparameter tuning + training on the data set with the optimal hyperparameters
on the full data set

It allows us to perform stability analysis (e.g feature selection)

« We can apply more complex schemes than simple CV (e.g Monte-Carlo CV, repeated K-
fold CV...)
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Stacking/Meta Learning for weighted aggregation
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Results — Late fusion improves performances
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Results — Interpretation of the transcriptomic model
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Outlines

3. Simple ML strategies for baseline PET
predictions
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A brief overview of our images

Manual
corrections by
Narinée and |

100 TIPIT patients with baseline PET

Remove
outlier voxels
Add Necrosis
Separate

Manual
segmentation and

anatomical
annotation by Marie

spatially
disjoint areas
Correct and
harmonize

* For all the lesions of all the patients we annotations
extracted radiomics features using a Redo some
custom wrapper of Pyradiomics (available ROIls from
on LITO GltHUb) scratch
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Leverage all the metastases of each patient
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Radiomic profiles

Whole-body profile

Improve sample representation by

leveraging richer information
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Different classes of hand-crafted aggregated features

Binary variables for the Base whole-body model
presence of metastases in (Total volume, Dmax, liver
different anatomical sites and spleen metabolism...)

Clinical variables (sex, age,
BMI, Pack-year, PDL1,

oncogene mutations,
histology...)

Aggregation of radiomic
features measured on each
lesion (mean, max, std) —
Multiple Instance Learning
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LPOCV scheme to train an test with a maximum of patients

Are predicted risk scores and outcomes
oncordant for the pair of patients (0 or 1) ?
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Late fusion strategy to keep things simple
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* Weights can be learnt by measuring

v

the performance of each model on the
training set with a cv scheme
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Recursive Feature Addition strategy to keep things simple
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Select best feature
with CV

Select best feature with CV

Predict with the
final model

if the gain in performance

exceed a given threshold

Train the final model on the full
training set
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Results - late fusion OS and PFS

—— LPOCV Cindex = 06551 — [POCV Cindex = 0.6135
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Results — RFA OS and PFS
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Results — feature importance late fusion OS

Most important features of each fold
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Outlines

4. An interpretation tool at the lesion level
based on Shapley values
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An interpretation tool at the lesion level

For a given aggregated model and for one patient, how to measure the impact of each

of his lesions on the final prediction ?

Total contribution

Max volume :
—@ e @ 0 contribution
prediction

@ 0 contribution

ﬂ 0 contribution

How to generalize such and approach to any kind of aggregated predictive model ?

LITO

23



Shapley values to measure contributions

Coalition of players Cooperation game Payoffs )
« All metastases (i.e players) cooperate to

obtain the final prediction.

* We can borrow Shapley values from
cooperative game theory for measuring
the impact of each lesion to the final
prediction.

ML model/ Final
predictor prediction

~1
O = % Z n|;|1 &pred(S U {i) — pred(S)l

marginal contribution of |

y

* It is the only payment rule satisfying Efficiency, Symmetry, Linearity and Null-player properties.
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Independent contributions are not Shapley values !

Let us consider a game g with two players x1, x2 such that the result obtained by each

player separately is null and the result obtained from their cooperation is maximal:

gx1)=8(x)=0 , glx,x)=1 , g(9)=0(no player involved)

1 =
P =

%(g(xl) - g(9)) + %(g(Xh x2) — g(x)) =
. =05

1 1
— X0+ -x1=05
5 —|—2><
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Application of Shapley values to OS late fusion model
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Application of Shapley values to OS late fusion model
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Conclusion

Thank you for your attention !
PLACEBO CHRISTMAS

BUT SANTA... IT'S EMPTY OH... YOU MUST BE IN THE
CONTROL GROUP THEN.

SORRY, KID, OUR MACHINE
LEARNING CRM WITH

PREDICTIVE ANALYTICS SAYS
YOU'RE GETTING COAL THIS YEAR.
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® morketoonlsf com
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