

Highlights

SIOPE Brain Tumour Group: Imaging (June 11th and 12th)

ISPNO (June 13th - June 15th)

20th International Symposium On Pediatric Neuro-Oncology

F Frouin – LITO Group Meeting - July 6th 2022

SIOPE Brain Tumour Group : Imaging (and others)

- Guidelines for imaging in different subtypes of pediatric Brain Tumors
 - PET in addition to MRI
 - Theranostics
 - FLAIR after contrast
 - New sequences for spinal chord
 - Data available ! (always a problem)
- Focus on Radiotherapy /Immunotherapy

SIOPE Brain Tumour Group : Imaging

European Journal of Nuclear Medicine and Molecular Imaging

<https://doi.org/10.1007/s00259-022-05817-6>

GUIDELINES

Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [¹⁸F]FDG: version 1.0

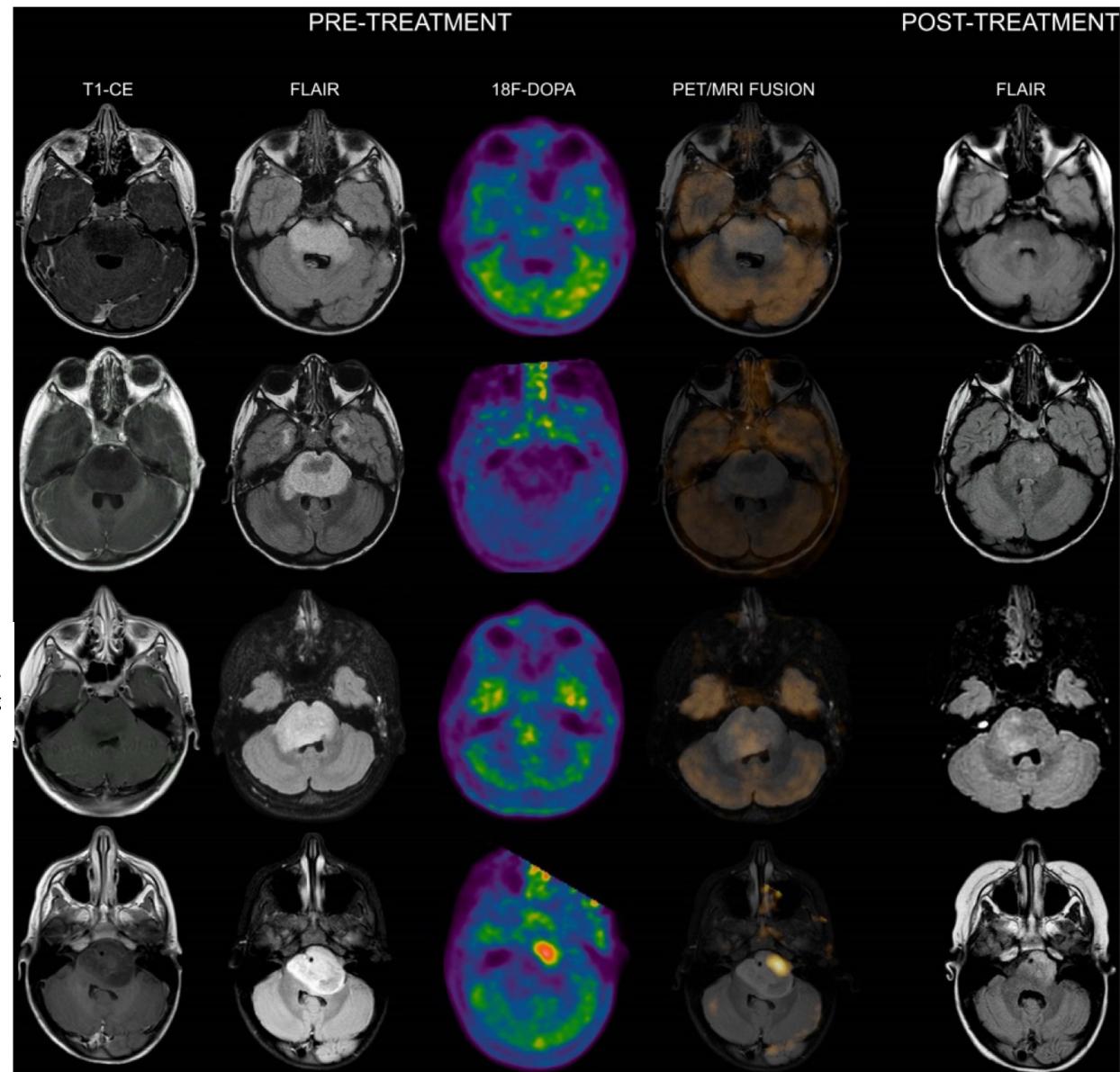
Arnoldo Piccardo¹ · Nathalie L. Albert² · Lise Borgwardt³ · Frederic H. Fahey⁴ · Darren Hargrave⁵ · Norbert Galldiks^{6,7} · Nina Jehanno⁸ · Lars Kurch⁹ · Ian Law³ · Ruth Lim¹⁰ · Egesta Lopci¹¹ · Lisbeth Marner¹² · Giovanni Morana¹³ · Tina Young Poussaint⁴ · Victor J. Seghers^{14,15} · Barry L. Shulkin¹⁶ · Katherine E. Warren¹⁷ · Tatjana Traub-Weidinger¹⁸ · Pietro Zucchetta¹⁹

 Check for update

Clinical Indication	Amino acid Radiopharmaceutical	Method	Threshold	Reference
Differentiation between neoplastic and non-neoplastic brain lesion	[¹⁸ F]FET [¹¹ C]MET [¹⁸ F]DOPA	TBRmax TBR max TBRmax	1.6 1–1.5 1	[71] [56, 58, 102] [81, 82]
Tumour Grading	[¹⁸ F]FET [¹¹ C]MET [¹⁸ F]DOPA	TAC curve shape N.R TSRmax	N.A N.R 1	[72] [81, 82] [81, 82]
Prognostic value	[¹⁸ F]FET	TBR max and TAC curve shape	1.6	[71, 72]
	[¹¹ C]MET [¹⁸ F]DOPA	SUVmax TSRmax	3 1	[65] [81, 82]
Tumour Relapse	[¹⁸ F]FET [¹¹ C]MET [¹⁸ F]DOPA	TBRmax SUVmax Not available	1.6 3 Not available	[71] [65] Not available

- ¹⁸F-FDG – ¹¹C-Methionine – ¹⁸F-FET : Some disappointing results
- Interesting results with ¹⁸F-DOPA
- Necessity of acquisition at baseline (not only during therapy)

Pet guidelines updated to 2021 WHO classification (HGG)


Correlation of multimodal ^{18}F -DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas

n=19

Giovanni Morana^{1,2}✉, Domenico Tortora¹, Gianluca Bottoni³, Matteo Puntoni⁴, Gianluca Piatelli⁵, Federica

Results: DIPGs with a ^{18}F -DOPA uptake Tumor/Striatum (T/S) ratio >1 presented an OS ≤ 12 months and lower degree of tumor volume reduction following treatment ($p = 0.001$). On multivariate analysis, T/S ($p = 0.001$), ring enhancement ($p = 0.01$) and the degree of MRI tumor volume reduction ($p = 0.01$) independently correlated with OS. In all patients, areas of increased ^{18}F -DOPA uptake overlapped with regions demonstrating more prominent residual components/lack of response following treatment.

Correlation of multimodal ^{18}F -DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas

Giovanni Morana^{1,2}, Domenico Tortora¹, Gianluca Bottoni³, Matteo Puntoni⁴, Gianluca Piatelli⁵, Federica

Figure 1. Co-registered and fused MRI and ^{18}F -DOPA PET images of DIPGs with $\text{T/S} \leq 1$.

Results: DIPGs with a ^{18}F -DOPA uptake Tumor/Striatum (T/S) ratio >1 presented an OS ≤ 12 months and lower degree of tumor volume reduction following treatment ($p = 0.001$). On multivariate analysis, T/S ($p = 0.001$), ring enhancement ($p = 0.01$) and the degree of MRI tumor volume reduction ($p = 0.01$) independently correlated with OS. In all patients, areas of increased ^{18}F -DOPA uptake overlapped with regions demonstrating more prominent residual components/lack of response following treatment.

SIOPE Brain Tumour group : Imaging and HGG

Potential of PSMA (Prostate specific membrane antigen => not specific !) for HGG
Investigation in preclinical studies and in adults to have a rationale for children

ORIGINAL RESEARCH article

Front. Oncol., 17 November 2021

Sec. Cancer Imaging and Image-directed Interventions

<https://doi.org/10.3389/fonc.2021.774017>

PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook

Maximilian A. Kirchner^{1†}, Adrien Holzgreve^{1†}, Matthias Brendel¹, Michael Orth², Viktoria C. Ruf³, Katja Steiger⁴, Dennis Pötter¹

Figure 4

Figure 3

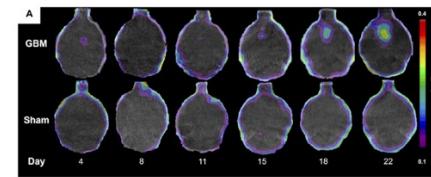
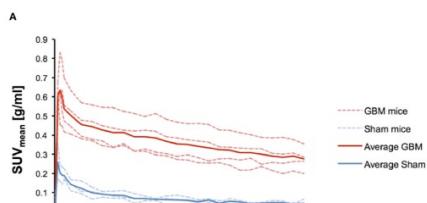



Figure 2

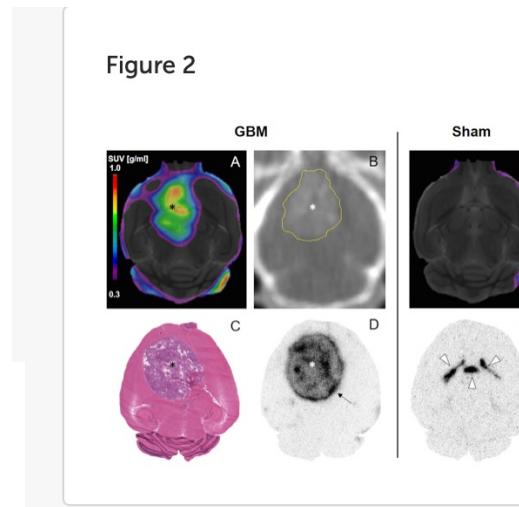
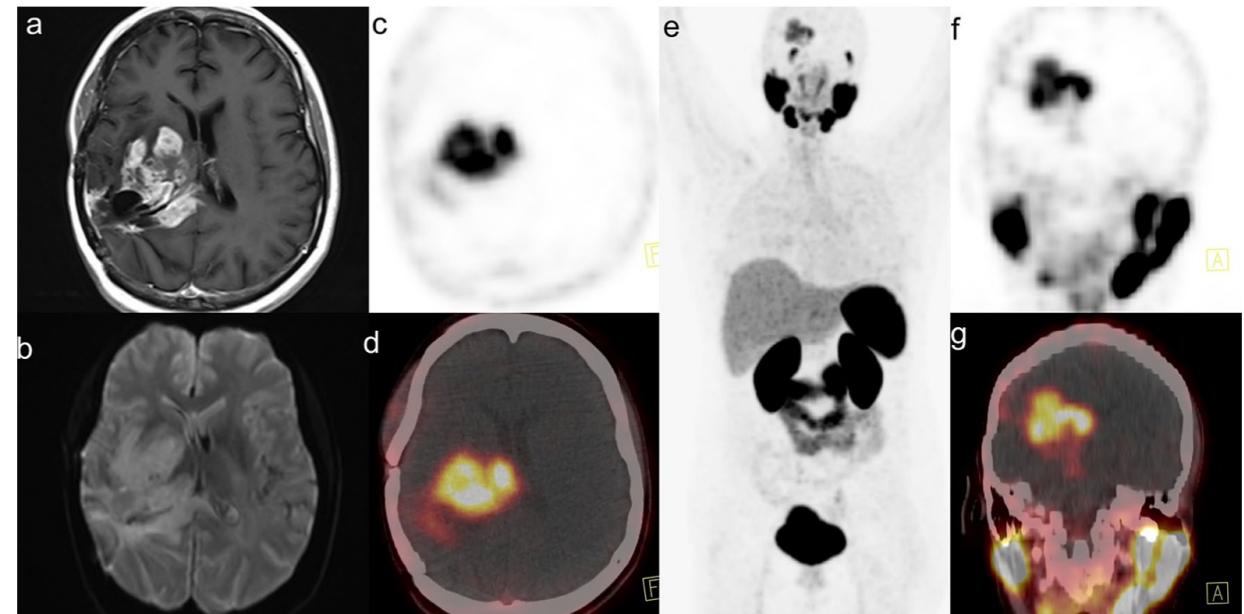


FIGURE 2 ¹⁸F-PSMA-1007 PET (A, E), CT (B), H&E (C) and ex vivo ARG (D, F). PET images were fused onto an MRI template. Asterisk, tumor. Yellow delineation in (B) for better visibility. Arrow, Increased peripheral signal. Arrowheads, ventricles; circumventricular organs.

Sham mice showed no increased signal at the site of implantation compared to healthy brain tissue ($p=0.858$, see Figure 2E); the signal in sham mice was lower compared to GBM mice with $TBR_{mean} 1.0 \pm 0.1$ ($p=0.057$), $SUV_{max} 0.25 \pm 0.06$ g/ml ($p=0.005$), and $SUV_{mean} 0.06 \pm 0.01$ g/ml ($p=0.002$).

the application of PSMA radioligand therapy. Presumably, a more detailed understanding of the pathophysiologic mechanisms for assumed specific and nonspecific PSMA uptake in GBM will be helpful when aiming for PSMA radioligand therapy. Although we were able to demonstrate that the GL261 model displays

SIOPE Brain Tumour group : Imaging and HGG


scientific reports

OPEN

Expression of glutamate carboxypeptidase II in the glial tumor recurrence evaluated in vivo using radionuclide imaging

Jolanta Kunikowska¹, Rafał Czepczyński²✉, Dariusz Pawlak³, Henryk Koziařa⁴, Kacper Pełka^{1,5} & Leszek Królicki¹

Glutamate carboxypeptidase II (GCP), also known as prostate specific membrane antigen (PSMA) has been found to be expressed in glioma vasculature in in-vitro studies. GCP expression can be traced with the use of $[^{68}\text{Ga}]$ Ga-PSMA-11 PET/CT used routinely for prostate cancer imaging. The

Figure 1. Male, 39 years, with a recurrent anaplastic astrocytoma IDH wildtype grade III in the right parieto-occipital lobe. Three years after surgery, and 15 months after local radionuclide therapy with $[^{213}\text{Bi}]$ Bi-DOTA-SP, a contrast-enhanced mass around the surgical cavity was detected with MR. $[^{68}\text{Ga}]$ Ga-PSMA-11 accumulation in the tumor was found with the SUV_{max} 4.9, SUV_{mean} 3.3, TBR 70 and TLR 0.8 (a—contrast-enhanced T1WI, b—DWI, c—PET transverse image, d—fused PET/CT transverse image, e—maximal intensity projection, f—PET sagittal image, g—fused PET/CT sagittal image).

SIOPE Brain Tumour Group : Clinical trials

- Point on definition of new clinical trial or ongoing clinical trials
- For instance call for
 - > High risk non WNT (wingless-activated) non SHH (Sonic Hedgehog) Medulloblastoma (C Dufour Gustave Roussy)
 - >Radiation Therapy /re- Radiation Therapy versus HDCT (High Dose Chemotherapy)

SIOPE Brain Tumour Group : HGG

- DIPG/DMG inside HGG group
- Focus on general trials / BIOMEDE/ Immunotherapy
Vaccines and CAR-T cells (multi-modal immunotherapy)
- BIOMEDE and BIOMEDE-2 par J Grill
- Radiation Therapy : Hypo fractionation in DMG

SIOPE Brain Tumour Group

- BIOMEDE :
Stop some arms

Lessons learned from BIOMEDE

- BIOMEDE-2 : safe production of ONC-201 as compassionate drug
- Clinical trial two arms Histone H3 mut TP53 mut
- Evotorimus versus Onc-201 in addition to RT
- TP53mutation -> radioresistance
- Prediction of metastases
- Double mutation DMG -> intermediate profiles

ISPNO – Sessions plénières sinon 2 sessions en parallèle

- Oral <-> Une grosse publication (IF +++)

Article

GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas

<https://doi.org/10.1038/s41586-022-04489-4>

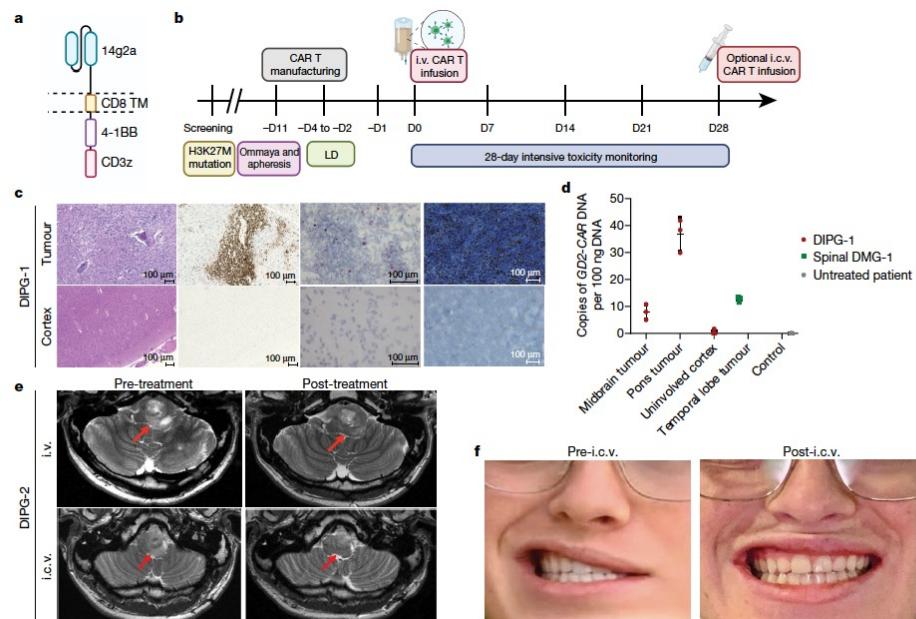
Received: 2 August 2021

Accepted: 28 January 2022

Published online: 7 February 2022

Open access

Check for updates


Robbie G. Majzner^{1,2,3,13}, Sneha Ramakrishna^{1,2,13}, Kristen W. Yeom⁴, Shabnum Patel¹, Harshini Chinnasamy¹, Liora M. Schultz^{1,2}, Rebecca M. Richards^{1,2}, Li Jiang⁵, Valentin Barsan^{1,2}, Rebecca Mancusi⁶, Anna C. Geraghty⁶, Zinaida Good^{1,37}, Aaron Y. Mochizuki⁶, Shawn M. Gillespie⁶, Angus Martin Shaw Toland⁸, Jasia Mahdi⁶, Agnes Reschke^{1,2}, Esther H. Nie⁹, Isabelle J. Chau⁶, Maria Caterina Rotiroti², Christopher W. Mount¹, Christina Baggott¹, Sharon Mavroukakis¹, Emily Egeler¹, Jennifer Moon¹, Courtney Erickson¹, Sean Green², Michael Kunicki^{1,2}, Michelle Fujimoto^{1,2}, Zach Ehlinger², Warren Reynolds², Sreevidya Kurra², Katherine E. Warren⁵, Snehit Prabhu¹, Hannes Vogel⁸, Lindsey Rasmussen⁹, Timothy T. Cornell⁹, Sonia Partap⁶, Paul G. Fisher⁶, Cynthia J. Camper⁶, Mariella G. Filbin⁵, Gerald Grant¹⁰, Bita Sahaf^{1,2}, Kara L. Davis^{1,2}, Steven A. Feldman¹, Crystal L. Mackall^{1,2,3,11,14} & Michelle Monje^{1,2,6,8,10,12,14}

934 | Nature | Vol 603 | 31 March 2022

- 0 IFN response
- 1 Lipid metabolism
- 2 Hypoxic
- 3 Phagocytosis
- 4 Monocytes
- 5 Proliferative
- 6 Maturing monocytes

CSF sample single-cell RNA sequencing was filtered to isolate myeloid cells. Clustering was conducted after data integration by Harmony. n = 6,497 myeloid cells

Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system¹. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells², providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal

Three of four patients derived radiographic and clinical benefit after i.v. administration of GD2-CART cells.