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Introduction
Compétences
• Postes occupés

– Maître de Conférence ENSICAEN (école d’ingénieurs, option Traitement des Images), Caen

– Chercheur CNRS LIMOS, Clermont-Ferrand

– Chercheur CNRS GREYC, Caen

– depuis janvier 2021 : Chercheur CNRS mise à disposition au LITO

• Domaines de compétences

– Optimisation de critères continus pour la segmentation, le suivi d’objets, le filtrage et

l’évaluation
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Optimisation de critères continus pour la segmentation, le suivi
d’objets, le filtrage et l’évaluation
Le point commun de ces approches consiste en la modélisation du problème par un

critère à optimiser. La variable à optimiser, le critère ainsi que laméthode

d’optimisation vont dépendre du problème posé.

• Segmentation

• Suivi/Segmentation

• Filtrage, Restauration d’images

• Évaluation/Fusion
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• Segmentation

– Variable à optimiser : Une régionΩ ∈ Rn
de frontière ∂Ω dans une image I.

– Critère à optimiser : Exemple segmentation d’une région homogène

J(Ω) =

∫
Ω

(I(x)− µ(x))2dx +
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∂Ω

ds

– Méthode d’optimisation : Gradients de forme, optimisation de domaines

< J
′(Ω), V >=?
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Optimisation de critères continus pour la segmentation, le suivi
d’objets, le filtrage et l’évaluation
Le point commun de ces approches consiste en la modélisation du problème par un

critère à optimiser. La variable à optimiser, le critère ainsi que laméthode

d’optimisation vont dépendre du problème posé.

• Segmentation

– Variable à optimiser : Une régionΩ ∈ Rn
de frontière ∂Ω dans une image I.

– Critère à optimiser : segmentation d’une région homogène (Chan et Vese)

– Méthode d’optimisation : Gradients de forme, optimisation de domaines

Contour initial Contour en évolution Contour final
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Optimisation de critères continus pour la segmentation, le suivi
d’objets, le filtrage et l’évaluation
Le point commun de ces approches consiste en la modélisation du problème par un

critère à optimiser. La variable à optimiser, le critère ainsi que laméthode

d’optimisation vont dépendre du problème posé.

• Filtrage

– Variable à optimiser : L’image débruitée u estimée à partir d’une image f

– Critère à optimiser : Exemple minimisation de la variation totale + norme L
1
ou L

2

J(u) =

∫
g(x)|∇u|+ λ

∫
(f(x)− u(x))τdx

– Méthode d’optimisation : optimisation convexe, approches duales, Lagrangien

augmenté, méthodes de relaxation par blocs d’Uzawa
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Introduction
Optimisation de critères continus pour la segmentation, le suivi
d’objets, le filtrage et l’évaluation
• Filtrage : Exemple en utilisant la Variation Totale (TV) pondérée ou non par une

fonction dépendant du gradient avec la norme L1 ou L2

Image bruitée TV + L2 TV + L1 TVg + L1

Figure 1: Filtrage/débruitage d’images par approches continues



Introduction
Optimisation de critères continus pour la segmentation, le suivi
d’objets, le filtrage et l’évaluation
• Filtrage : Exemple de filtrage géométrique interactif sur des images couleur en

utilisant les moments couleur

Figure 2: Exemple de filtrage géométrique sur une image couleur
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Le point commun de ces approches consiste en la modélisation du problème par un

critère à optimiser. La variable à optimiser, le critère ainsi que laméthode

d’optimisation vont dépendre du problème posé.

• Segmentation [4 chapitres de livres, IRBM 2014, IPTA 2016, SIAM 2003 ...]

→méthodologie présentée dans cet exposé / Projet BIOMEDE, segmentation de

tumeurs 3D en IRM multimodale

• Suivi / Mouvement [IRBM 2014, EMBS 2009, VLSI 2008, JMIV 2006...]

→ Travaux en perspectives ANR VOCALISE, échographie des cordes vocales

• Filtrage, Restauration d’images [CAIP 2013, CPCV 2012, VISAPP 2010, JMIV 2010...]

→ Filtrage à étudier pour l’imagerie médicale / preprocessing

• Évaluation/Fusion [ArXiv2021,ICIP 2014]

→méthodologie présentée dans cet exposé / Projet BIOMEDE
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Difficultés de la Segmentation en imagerie médicale
• Complexité d’analyse et d’interprétation des niveaux de gris de l’image (bruit

complexe, différentes caractéristiques tissulaires, absence de gradient ...)

→ nécessité de pouvoir intégrer des modélisations statistiques avancées

• Diversité et complexité des données à traiter et analyser (2D, 2D+t, 3D, 3D+t,

multimodalité ...)

→ nécessité d’avoir un modèle de contour ou de surface précis, + appréhender l’aspect

multidimensionnel (2D ou 3D), l’aspect temporel et l’aspect multimodalité

• Des technologies en constante évolution

→ nécessité de développer des modèles génériques et flexibles

• Faible quantité de données expertisées pour certaines pathologies rares (exemple:

GITC, Projet BIOMEDE)

→ Intérêt des approches hybrides combinant apprentissage et modélisations intrinsèques

• Utilisation de ces outils dans un contexte clinique par des experts en médecine

→ nécessité de développer des indices de variabilité, de confiance et repositionnement
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Segmentation
Optimisation d’un critère : 2 Aspects
1. Modélisation continue : Introduction d’un critère à optimiser

2. Résolution du problème d’optimisation :



Segmentation
Optimisation d’un critère
1. Modélisation continue : Introduction d’un critère à optimiser

J(Ω) =

∫
Ω

k(x,Ω)dx +

∫
∂Ω

k(s)ds

→ Critère incluant des termes basés régions ou contour qui vont nous permettre

d’introduire des informations sur le domaine recherché

→ Différentes fonctions k(x,Ω) peuvent être étudiés pour différentes applications :
segmentation et suivi d’objets dans les images et les vidéos, segmentation de régions

couleur, segmentation de régions 2D ou 3D, modèle de bruit, a priori sur la forme,

segmentation ou suivi de régions non homogènes en utilisant des densités de probabilité

non paramétriques ...



Segmentation
Optimisation d’un critère
2. Résolution du problème d’optimisation :

→ Calcul de l’équation d’évolution en utilisant les fonctions des ensembles de niveaux

régularisées [Chan et Vese 2001]

→ Outils d’optimisation de domaines [Delfour et Zolesio] : dérivation par rapport au

domaine pour obtenir l’équation d’évolution d’un contour [Jehan-Besson, Barlaud, Aubert

IJCV 2003]

→ Approches duales, optimisation convexe : recherche du domaine par seuillage d’une

fonction u optimale [Esedoglu et al SIAM 2006, Bresson et al JMIV 2007]



Segmentation
Cadre statistique pour la segmentation et le suivi
De nombreux critères peuvent être modélisés sous la forme de l’optimisation de

fonctions de densités de probabilités en prenant k(x,Ω) → ϕ(p(y(x),Ω))
(changement du domaine d’intégration pour la fonctionnelle).

NB : Les densités de probabilités utilisées vont permettre de tirer bénéfice de la répartition

(fréquence) de caractéristiques de l’image scalaires ou vectorielles.



Segmentation
Cadre statistique pour la segmentation et le suivi
Dépendant de la nature de la région et de la physique d’acquisition du signal, la pdf

pourra être paramétrique ou non paramétrique :

• pdfs paramétriques (famille exponentielle) : [Martin et al 2004; Galland et al 2005], [Lecellier et al 2006/2010]

• pdfs non paramétriques (parzen) : [Aubert et al SIAM 2003]; [Kim et al 2003]; [Rougon, Petitjean, et al 2005]; [Rathi et al 2006]; [Herbulot et al 2006]; [Michailovich,

Rathi, Tannenbaum, 2007] ...



Segmentation
Cadre statistique pour la segmentation et le suivi



Segmentation
Optimisation de divergences entre pdfs
Pour la segmentation supervisée ou non supervisée, nous pouvons introduire

l’optimisation de divergences entre deux pdfs :∫
Dy

ϕ (p(y,Ω), q(y)) dy

avec y une caractéristique scalaire ou vectorielle de l’image (exemple : y=I l’intensité)

et Dy le domaine de définition de y (exemple Dy = [0, 255] pour y = I).

• La pdf p(y,Ω) représente la densité de probabilité de la caractéristique y à

l’intérieur de la régionΩ (paramétrique ou non paramétrique)

• La pdf q(y) densité de probabilité connue ou inconnue

• La fonction ϕ permet de comparer les deux pdfs (e.g ϕ(a, b) = (
√
a−

√
b)2 :

Hellinger).

Références : [Lecellier et al SSVM 2009, IRBM 2014], [Jehan-Besson et al chapitre de livre 2010]



Segmentation
Maximisation de divergences entre pdfs
La segmentation non supervisée peut être formulée en maximisant le critère suivant :

F(Ωint,Ωout, C) =

∫
Dy

ϕ (p(y,Ωint), q(y,Ωout)) dy

Cela signifie que l’on va partager l’image en deux régions de telle sorte à maximiser la

distance entre les histogrammes associés.



Segmentation
Segmentation non supervisée : comparaison de critères

Référence :[IRBM14,SSVM09]



Segmentation
Segmentation 3D non supervisée avec KL

Référence :[Book Chapter 2010]



Segmentation
Minimisation de divergences entre pdfs pour la segmentation
supervisée en utilisant une pdf de référence
Une autre application (supervisée) va consister à rechercher une région dans l’image

connaissant son histogramme de référence qref . Nous cherchons alors à minimiser le

critère suivant :

F(Ωin) =

∫
Dy

Ψ(p(y,Ωin), qref (y)) dy

Ce critère peut être utilisé pour :

• le suivi d’une région d’intérêt dans une image

• la segmentation supervisée de textures

• éventuellement l’utilisation d’un a priori sur la densité de probabilité (issue d’une

méthode apprentissage)



Segmentation
Segmentation avec a priori de forme
Exemple : Utilisation des moments de Legendre [Foulonneau et al PAMI 2006]

(possibilité d’introduire des invariances aux changements affines de la forme de

référence) et d’un système de minimisations alternées pour la segmentation en

échocardiographie [Lecellier et al ICIP 2006] :

• Évolution en utilisant un a priori de bruit pendant n itérations

• Évolution en utilisant l’a priori de forme pour retrouver la forme de référence

(a) Rayleigh avec a priori de forme (b) tracé expert
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Évaluation et fusion
Mise en place d’un cadre méthodologique
L’évaluation ou la fusion des méthodes de segmentation consiste à classer, comparer

ou fusionner différentes méthodes de segmentation.

Notation : {Ωi}i∈[1,n], les régions calculées en utilisant différents résultats de

segmentation pour une image donnée ou différents résultats de segmentation pour

plusieurs images dans des modalités différentes.

Contexte initial de l’étude : Action IMPEIC (Initiative Multicentrique pour une

Plateforme d’évaluation en Imagerie Cardiaque) dirigée par F. Frouin (LITO INSERM

Paris) du GDR STIC Santé



Évaluation et fusion
Apports scientifiques
De manière classique, dans la littérature, c’est STAPLE [Warfield et al TMI 2004] qui est

utilisé pour l’évaluation des méthodes de segmentation sans gold standard.

Nous proposons ici d’estimer une “forme mutuelle” permettant de combiner et

classifier différentes méthodes de segmentation [ICIP2014,ArXiv2021].

Nos contributions :

→ Proposition d’un critère original à optimiser utilisant une métrique entre les

formes basée sur la théorie de l’information

→ Modélisation continue du critère afin de pouvoir calculer le gradient de forme en

utilisant les outils d’optimisation de domaines

→ Application à l’évaluation et à la fusion pour différentes problématiques (IRM

cardiaque, images couleur, IRM multimodale)



Évaluation et fusion
Modélisation mathématique
• A partir de n formes segmentées {Ω1, ...,Ωn}, l’objectif est de calculer une forme

de référence µ qui permet de mutualiser les informations des segmentations en

entrée tout en étant robuste aux segmentations aberrantes :

• Notons t et di les réalisations des variables aléatoires T(X) et Di(X)

di(x) =

{
1 si x ∈ Ωi

0 si x ∈ Ωi

→ forme de référence ? t(x) =

{
1 si x ∈ µ

0 si x ∈ µ



Évaluation et fusion
Forme mutuelle variationnelle :

min
µ

n∑
i=1

d(Ωi, µ) = min
µ

n∑
i=1

H(Di, T)− I(Di, T)

avec la somme des entropies jointes JH(T) =
∑n

i=1 H(Di, T) et la somme des

informations mutuelles MI(T) =
∑n

i=1 I(Di, T).
Ce critère ce justifie par le fait que ϕ(Di, T) = (H(Di, T)− I(Di, T)) est une métrique

qui satisfait les propriétés suivantes :

1. ϕ(X, Y) ≥ 0

2. ϕ(X, Y) = ϕ(Y , X)

3. ϕ(X, Y) = 0 si et seulement si X = Y

4. ϕ(X, Y) + ϕ(Y , Z) ≥ ϕ(X, Z)

De plus nous pouvons donner une justification géométrique à ce critère statistique.



Évaluation et fusion
Forme mutuelle variationnelle :
• Interprétation statistique du critère :

J(T) =

n∑
i=1

(H(Di, T)− I(Di, T)) = JH(T) + MI(T)

utilisation des analogies entre la théorie de l’information et les mesures d’aires

Nous recherchons la forme mutuelle qui va maximiser l’information mutuelle (une

mesure statistique de l’intersection) tout en minimisant l’entropie jointe (une

mesure statistique de l’union).

→ Cela correspond à la minimisation d’une différence symétrique statistique.



Évaluation et fusion
Comparaison avec d’autres critères
• Forme moyenne variationnelle basée sur la différence symétrique classique

[Soatto et al IJCV 2002, Charpiat et al ICIP 2003, Berkels et al JMIV 2010]

min
µ

n∑
i=1

d(Ωi, µ) = min
µ

n∑
i=1

|Ωi4µ|

en utilisant |Ωi4µ| la différence symétrique classique (union privée de

l’intersection).

• Forme mutuelle variationnelle basée sur une différence symétrique statistique

[Jehan-Besson et al ICIP2014, ArXiv2021]:

min
µ

n∑
i=1

d(Ωi, µ) = min
µ

n∑
i=1

H(Di, T)− I(Di, T)

→ Comparaison proposée dans la publication ArXiv



Evaluation et fusion
Exemple de résultat obtenu sur une coupe d’IRM cardiaque :

→ Différentes méthodes de segmentationm1 àm5

m1 m2 m3 m4 m5

→ Forme mutuelle et tracé expert :

Mutual shape Expert

Paramètres de sensibilité et spécificité, pi = TP/(TP + FN) et qi = TN/(TN + FP).

→ Table de classification :

i m1 m2 m3 m4 m5

pi 0.998 0.992 0.843 0.995 0

qi 0.844 0.956 0.983 0.945 0.801
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Projet BIOMEDE
Analyse des GITC en IRM multimodale
Dans le cadre des projets PHRC BIOMEDE (2014-2019) et BIOMEDE-2 (2020-2023)

(direction F. Frouin pour le LITO), le laboratoire LITO (Institut Curie) et ses partenaires

(NeuroSpin, Hôpital Necker, Gustave Roussy) s’intéressent à l’analyse et au suivi des

tumeurs GITC (Gliome Infiltrant du Tronc Cérébral), qui sont des tumeurs

pédiatriques rares de très mauvais pronostic.

Objectifs concernant la partie analyse des images :

• La localisation et la segmentation des tumeurs sur des images IRM 3D

multiparamétriques (images pondérées T1 sans et avec agent de contraste,

images pondérées T2 et FLAIR, images de diffusion)

• La caractérisation des tumeurs par des indices radiomiques (thèse de Doctorat de

Jessica Goya Outi encadrée par F. Frouin et soutenue en 2019)

• Le suivi de l’évolution de la tumeur et des indices associés au cours du traitement



Projet BIOMEDE
Analyse des GITC en IRM multimodale
Exploration de la segmentation des GITC dans les IRM multimodales recalées dans

un même repère et standardisées par l’équipe radiomique du LITO [référence : J.

Goya Outi et al, Physics in Medecine & Biology, 2018] :

T1 T2 T1 Gd FLAIR

→ Problématique de la segmentation : tumeurs non homogènes, 3D, surface

complexe, tumeur parfois disséminée autour de la zone principale, nécessité de

combiner des informations multimodales, faible volume des données expertisées

en raison de la rareté de la pathologie



Projet BIOMEDE
Expertise proposée et études en cours
Nos études concernent :

1. Modélisation de la segmentation comme un problème d’optimisation continu

afin d’obtenir la segmentation 2D ou 3D sur chaque image,

→ Test de différentes critères statistiques

2. Modélisation de la fusion de différentes méthodes de segmentation en

utilisant la théorie de l’information

→ La segmentation est obtenue de manière indépendante sur chaque image et chaque

modalité par différentes méthodes, le but est alors de fusionner les informations de

manière robuste



Projet BIOMEDE
Segmentation 3D : Critères statistiques testés
3 critères ont été utilisés :

• Minimisation de l’anti-log vraisemblanceMV (Maximum de Vraisemblance)

JMV(Ωin,Ωout) = −
∫
Ωin

log p(I(x);µin, σ
2
in)dx −

∫
Ωout

log p(I(x), µout, σ
2
out)dx

• Minimisation d’une fonction de la variance VA

JVA(Ωin,Ωout) =

∫
Ωin

ϕ(σ2
in)dx +

∫
Ωout

ϕ(σ2
out)dx

avec ϕ(r) = log(1 + r).

• Maximisation de la divergence de Kullback-Leibler KL

JKL(Ωin,Ωout) =

∫
KL

(
p(y;µin, σ

2
in), p(y;µout, σ

2
out)

)
dy



Projet BIOMEDE

MV T1w MV T2w MV T1Gd MV FLAIR

VA T1w VA T2w VA T1Gd VA FLAIR

KL T1w KL T2w KL T1Gd KL FLAIR

NB : La forme initiale 3D est basée sur l’hyper signal de la modalité FLAIR. La même initialisation est utilisée

pour toutes les méthodes.



Projet BIOMEDE
Evaluation des différentes segmentations 3D obtenues

Table 1: Évaluation des différentes segmentations (méthodes MV, VA, KL) obtenues par rapport

à la forme de référence 3D. Calcul du coefficient de dice (DC).

MV T1w T2w T1Gd FLAIR

DC 0.869 0.866 0.898 0.770

VA T1w T2w T1Gd FLAIR

DC 0.833 0.869 0.766 0.771

KL T1w T2w T1Gd FLAIR

DC 0.833 0.843 0.869 0.771

NB : les méthodes sont ici utilisées pour illustrer l’algorithme de fusion. Il existe de

nombreuses méthodes permettant la segmentation d’images d’IRM multimodales [J.

Lapuyade-Lahorgue et al TMI 2017, Urien et al ISBI 2016, thèse Telecom Paris 2019 , T.

Henry et al Challenge Brats 2020 ...]



Projet BIOMEDE
Représentation 3D des différentes segmentations
Visualisation simple en utilisant le logiciel napari (python) :

Visualisation 3D : GITC sur image FLAIR



Projet BIOMEDE
Estimation de la forme mutuelle
→ en entrée : les résultats de segmentation obtenus avec différentes méthodes et

différentes modalités (recommandation RAPNO (Response Assessment in Pediatric

Neuro-Oncology 2020) : extraction d’une slice 2D où la tumeur a une surface

maximale pour analyser la tumeur DIPG).

→ en sortie : estimation d’une forme mutuelle MS1 calculée à partir des 12

segmentations en entrée et d’une forme mutuelle calculée sans la modalité FLAIR

soit 8 segmentations.

(a) Initial (b) MS1 (c) MS2 (wo FLAIR) (d) Expert

→ Démo de l’algorithme



Projet BIOMEDE
La forme mutuelle : un consensus robuste ?
Comparaison des résultats de segmentation au tracé expert :

Table 2: Calcul du coefficient DC en se basant sur la segmentation de l’expert pour les

différentes méthodesm1 àm12 et pour MS1 et MS2 en 2D

i m1 m2 m3 m4 m5 m6 m7

DC 0.920 0.887 0.915 0.731 0.865 0. 881 0.740

i m8 m9 m10 m11 m12 MS1 MS2

DC 0.740 0.881 0.841 0. 911 0.594 0.913 0.921

• Pour les formes mutuelles MS1 et MS2, le coefficient DC est au-dessus de 0.91

• Le coefficient DC de MS2 est légèrement au-dessus des autres

La forme mutuelle semble donc être pertinente afin d’estimer un consensus robuste à un

ensemble de segmentations en entrée. De plus la forme mutuelle semble robuste aux

segmentations aberrantes (outliers).



Projet BIOMEDE
La forme mutuelle : évaluation sans gold standard pertinente ?
Classement des méthodes de segmentation par comparaison à la forme mutuelle :

Table 3: Calcul du coefficient DC en se basant sur la forme mutuelle MS1 pour les différentes

méthodes de segmentationm1 àm12

i m1 m2 m3 m4 m5 m6

DC 0.971 0.956 0.960 0.799 0.875 0.951

i m7 m8 m9 m10 m11 m12

DC 0.767 0.809 0.919 0.887 0.935 0.621

Le classement sans gold standard évaluem1,m3,m2 comme les meilleures méthodes ce qui

est cohérent avec le classement donné par le tracé expert.

Le classement nous indique quem12,m4,m7 etm8 sont moins performantes (segmentations

obtenues sur les images FLAIR notamment).



Projet BIOMEDE
Publications
Publication conférence GSI 2021 LNCS 8 pages (International Geometric Science on

Information) : the objective of this GSI’21 conference is to bring together

pure/applied mathematicians and engineers, with common interest for Geometric

tools and their applications for Information analysis.
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Conclusion et Perspectives
Différentes idées à approfondir
• Segmentation 3D en utilisant un critère à optimiser

→ Analyse approfondie du signal et des images multimodales

→ Plusieurs modèles paramétriques ou non paramétriques avec des densités de

probabilités isolées ou jointes peuvent être étudiés

• Évaluation/Fusion des différentes méthodes de segmentation en utilisant la théorie de

l’information

→ Passage au 3D de la forme mutuelle

→ Évaluation sur la base de données BIOMEDE, 85 patients

→ Extension à une étude multi-régions en utilisant di

→ Intégrer des méthodes de deep learning 2D ou 3D afin d’évaluer et de fusionner des

données

→ Étude d’autres métriques de forme pour estimer la forme mutuelle.



Perspectives à plus long terme
→ Étude de l’évolution des tumeurs au cours du temps pour estimer l’impact du

traitement (étude de modèles mathématiques de formes permettant de décrire et

d’apprendre les déformations)

référence : Deep Functional Maps: Structured Prediction for Dense Shape Correspondence, O.

Litany, T. Remez, E. Rodolà, A. M. Bronstein and M.M. Bronstein, ICCV, 2017.

→ Classification de la zone tumorale (nécrose, tumeur viable, inflammation)

référence : Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural

networks: a BraTS 2020 challenge solution, T. Henry et al, BraTS 2020 proceedings (LNCS) paper.


