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@ Introductory digression : PCA and probabilistic PCA



PCA : minimum-error formulation

X =(x1, ..., xn)" € RVN*P (N centred observations)

We look for the best representation of our
dataset in a hyperplane of dimension q :

z= VqTx (encoding)
x' = V4z (decoding)

*with V; € RP*9 an orthogonal matrix

N
Minimize the reconstruction loss : n\7/in > llxi — VoV xill?
9 j=1

1
Solution : V,; = U, (Ug , Ag first q eigenvectors and eigenvalues of the
empirical variance)
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PPCA : a gaussian probabilistic model

We now consider x and z being random variables. The observations
(x1,...,xn) samples from the following probabilistic model :

x=Vyz4+e , e~N(0,0%)
p(z) ~ N(0,lq) (prior distribution)
p(x|z) ~ N(Vyz,021,) (marginal likelihood)

Integrating over z, we obtain the observed likelihood :

p(x) ~ N(0, VgV, + ol)

MLE estimators : VqMLE,c’}MLE € argmax L(x1, ..., Xn)
Vy,o

Solution : VMLE = Uy(Ag — 021,)?
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A change of paradigm : from points to distributions

Observations x; are no longer associated with single points z; but with
probability distributions p(z|x;)

Latent space

; ;
; ;
.X 1 1
; ;
:
; ; p(x|z)
; !
) ;
; ;
; ;
;

Encoding | Decoding

__________________________

*In this simple case we can explicitly derive the posterior distribution
p(z|x) x p(x|z)p(z). For more complicated probabilistic model it will not
be the case. We will need a variational approach !
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© Autoencoders



A naive non-linear dimensionality reduction technique

An compressed low dimensional
representation of the input.

Reconstructed
---------------- Ideally they are identical. ------------------» input
x~x
Encoder Decoder ,
9 fo X

Figure 1: An undercomplete autoencoder

Reconstruction error : 0, ¢* ¢ argmm— E
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Meaningful representation or excellent memorizing ?

We need to make sure that the autoencoder
will learn a meaningful representation.
We want to capture the latent manifold
structure (i.e generalization of the
hyperplane in the linear case).
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The reconstruction loss is not sufficient since it does not constrain the
latent representation. We need to modify it !
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Denoising autoencoders

A good representation should capture information robust to partial
destruction of the input (e.g humans are able to recognize partially
destroyed high-dimensional data such as images).

N
1
0", n— L iy f Ni
, € argmin p E_1 (xi, g0 (fo(X7))

Ideally they are identical.
X~ X 2
Reconstructed
input

¥

Original Partially
input destroyed  Input
input

s
(@)
X
g Encoder . Decoder ,
(@)
%
(@)

9 \{l x

An compressed low dimensional
representation of the input. —J

*Corruption can take various forms : additive gaussian isotropic noise,

drop-out noise, salt-and-pepper noise...
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Contractive autoencoders

The robustness to small perturbations is ensured by an additional penalty :

Reconstruction loss + regularization

N
.1
6%,0% € argmin = " L(xi,go (fo(x:)) + AllTF(IIE
n ———

=1 penalizes the gradient w.r.t input

@ We penalize cases where a small change in the input leads to a large
change in the encoding space.

@ we're essentially forcing the model to learn how to contract a
neighborhood of inputs into a smaller neighborhood of outputs.

n
* Frobenius norm : [|Al|2 = 3 |aj|?
ij=1
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© Variational Autoencoders



Here we go again : non-linear probabilistic model

Like with PPCA, (x1, ..., xy) results from a probabilistic generative
model based on a latent variable z.

p(z) ~N(0,ly) (prior distribution)

po(x|2) ~ N (fy(2), fa(2)1,) (marginal likelihood)

fO(Z) = Uz

Decoder N (qu’ 02 Ip)

fo fo

fo(2) = o7

Figure 2: probabilistic decoder (neural network)
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Encoder as a variational approximation

Main issue : the true posterior py(z|x) o pg(x|z)p(z) is intractable. The
simple PPCA approach (i.e find the best 8* with MLE and use py«(x|z) for
encoding) is not a valid approach anymore.

Variational inference principle

o Approximate by a simple parametric distribution g (z|x).

@ Optimize ® to minimize the Kullback-Leibler divergence between
go(z|x) and py(z|x).

go(z) = ax

Encoder

_ 2
el u(al) = A (an 2)

Bo(z) =52

Figure 3: probabilistic encoder (variational approximation)
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The big picture : encoding + decoding

N ((‘YXV 5}% I‘?)

g@(z) = Qi

Encoger
X 9 98

Bo(2) = B

L ISampIing

fa(2) = pz N (,uz,azlp)
Decotier
fo fo

fo(2) = o3

@ The output of the variational autoencoder is a probability distribution
po(x|2i) (with 2 ~ go(z|x;)).

@ Intuitively, we should expect the input/observation x; to be associated
with a strong probability value log p(x;j|Z;).
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Training objective for the variational autoencoder -I

Two interlinked objectives :

minimize KL (go(z|x)||pa(z|x)) (find the best encoding)
maximize log pg(x) (best fit the observations)

Evidence Lower Bound (ELBO)

KL (qo(2[x)llpa(2|x)) = = L(x,0, ) + log py(x)
ELBO

@ The KL divergence being positive, the ELBO is a lower bound for the
log-likelihood

@ Minimizing £ w.r.t ® we do minimize the KL divergence and look for
the best variational approximation (for a fixed 0).

Final objective

0%, " € argmax L(x, 0, )
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Training objective for the variational autoencoder -lI

max L(x, 0, ®) = —KL (go(z|x)I|p(2)) + Eqq(z]x)[log po(x|2)]

regularization term reconstruction term

* In our gaussian case, the KL term can be computed analytically
* The expected term can be estimated by sampling several time
2 ~ qo(z|x) and computing the empirical mean.

A

what can happen without regularisation x V what we want to obtain with regularisation

Nicolas Captier LITO group meeting May 19, 2021 16 / 19



The reparametrization trick

@ In order to optimize the training objective, we would like to apply
gradient descent optimization through the whole neural network

system.
@ The sampling step does not support backpropagation ! We need to
decouple the stochastic part and the deterministic parts that contain

the parameters we want to optimize.

decoder model decoder model

’ Deterministic node I
S °~q(z|x) ¢z=n+ao£

— *
66 o000

encoder model encoder model
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A few personnal thoughts about VAEs

@ In theory, the variational autoencoders are not bound to gaussian
distributions. Any distribution which can be parametrized by a neural
network and which is associated with a reparametrization trick should
work.

@ The isotropic gaussian prior p(z) ~ N (0, /) has a strong influence on
the latent space. It could be sometimes far to naive. Sometimes, it is
worth enforcing this regularization with 5 penalty.

@ Contrary to GANs or simple autoencoders, VAEs come from a solid
mathematical building that may allow for further developments and
complexifications.

Though variational autoencoders have shown very promising results within
the past 10 years, many obstacles remain to be overcome.
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