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© A few words about the TIPIT project



Lung cancer in France

@ Lung cancer is the first cause of cancer-related death in France

@ Non small cell lung cancer (NSCLC) is the most frequent type (85%)
with two major histologic sub-types (adenocarcinoma and squamous
cell carcinoma).

Oncogenic alterations \
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Diagnosed at a metastatic

stage

Targeted therapy
* Only 45%-50% of patients with objective

Expression of PD-L1 Pembrolizumab respgnse to prembro + chemo at
observed in 250% of tumor + chemotherapy Imaging

cells
* Only 40% of patients are alive at 2 years

Figure 1: Current standard-of-care for NSCLC in France

Can we optimize this current standard-of-care through the integration of
multimodal factors predicting the efficacy of immunotherapy combined
with chemotherapy ?
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TIPIT project : immunotherapy in lung cancer - |
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*200 NSCLC patients with sufficient available tumor material and first-line
treatment with immunotherapy and chemotherapy.
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TIPIT project : immunotherapy in lung cancer - Il
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@ How can we overcome the limitations set by the modest cohort size
(~ 200 patients) ?

@ Which tools can we use to provide biological interpretations to our
signatures 7

@ How can we integrate the different modalities to improve robustness,
predictive power and interpretability 7
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9 Segmenting lung lesions on CT scans with a U-Net architecture



A challenging segmentation of lung lesions in CT scans

We need to address the challenging task of segmenting the biopsied lung
lesions on CT scans. J

Manual segmentation Semi-automatic segmentation

3DSlicer

@ These methods are time consuming and semi-automatic segmentation
is maybe too general.

@ We need to develop and train an automatic pipeline specific to our
segmentation task.
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Building an automatic segmentation algorithm

r ™

Trainable & automatic
2D algorithm

Training step :
@ 198 patients for the training cohort (23725 256*256 2D slices) with a
80% — 20% validation split at the patient level
e Data augmentation to make the learning task more robust (rotation,
zoom, brightness...).
@ Training with binary focal loss (i.e extension of binary cross-entropy

loss) and early stopping.
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A brief digression : U-Net3+ architecture

Skip connections
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Convolution and pooling I Transpose convolution
\E ~
|
L e J
T T
Encoder ( contracting path) Decoder ( expanding path)

Full-scale skip connections

@ Each decoder layer incorporates same and smaller scale feature maps
from the encoder and larger scale feature maps from the decoder.

@ We want to capture and combine fine-grained and coarse grained

details.
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Some results

Testing step :

@ 20 independent patients, manually segmented by a Curie radiologist

@ Dice index and Jaccard index in 3D.

Mean 3D Dice index across the 20 CT scans : 0.657 J

Some possible explanations

© The U-Net is lacking some important information since it has been
trained with 8-bit images (0 - 255) and not Hounsfield unit images.

@ Some test images are quite difficult to segment (even for a radiologist)

* The 2D Dice index was not used since the wide range of slices with no
tumor lead to an optimistic bias (i.e by convention Dice = 1).
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Results : example 1

Ground truth Prediction

Dice = 0.825 10
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Results : example 2

Ground truth Prediction

Dice = 0.908
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Results : example 3

Ground truth Prediction

Dice = 0.167
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Results : example 4

Warning : these are not the same slices (left and right) !

Ground truth Prediction
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9 A multiple instance learning model to exploit the full potential of PET
scans

@ Introduction

@ Imaging assessment of the response to therapy
@ A multiple instance learning model



Predict the response to therapy from baseline PET scans

TIPIT : prediction of the response to therapy at patient-level

@ 200 metastatic NSCLC patients treated with chemo + immuno

e Multi-modal data collected at baseline (transcriptomics, medical
imaging, pathological, clinical)

Imaging data capture the whole baseline tumor burden. How can
we integrate this information and build a predictive model ?

¥ Q Notable challenges :

@ Complex inputs with a lot of

3, . . :
o information to deal with.
. @ Moderate number of patients.
l?‘\‘ e Strong need for interpretable
S predictions.
e
%!
-
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RECIST 1.1 : procedure at baseline

The radiologist selections up to 5 target lesions among measurable
lesions (2 per organ max).

Selection criteria :
e Sufficient size (measurable lesions)

* @ Suitability

’t Uni-dimensional measurement of
macroscopic tumour burden :

A
w I - TB=> Lj

i=1

\ rﬂ LiD : longest diameter of target i

baseline
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RECIST 1.1 : evaluation of response after therapy ignition

> 20% increase of TB (relative to NADIR)

e Progressive disease (PD): Appearance of new lesions
Unequivocal progression of non-target lesions
o Partial response (PR) : > 30% decrease of TB (relative to baseline)
o Stable disease (SD) : when neither partial response nor progressive
disease can be established
e Complete response (CR) : disappearance of all target lesions

With these 4 different classes we can easily derive a binary outcome :

y = 0 i.e partial response + complete response

y =1 i.e progressive disease + stable disease
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Pseudo-progression and immunotherapy

With immunotherapy, RECIST procedure must be adapted to account for
unconventional response patterns :

@ Response after an increase in tumour burden

@ Response during or after appearance of new lesions

Baseline, 19 mm 12 weeks, 29 mm 24 weeks, 12 mm

Figure 2: 77-year-old male with advanced-stage melanoma treated with
ipilimumab?.

" Monitoring immune-checkpoint blockade: response evaluation and biomarker development” - Nishino et al. 2017

Nicolas Captier LITO group meeting September 22, 2021 19



IRECIST : dynamic assessment of response

Progression requires confirmation on a consecutive scan at least 4
weeks apart (worsening).

RECIST 1.1 iRECIST DESCRIBES DATA MANAGEMENT, COLLECTION AND USE
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For our TIPIT patients we can use the different images that have been
acquired during a fixed period of time (ex: 6 months) to update the
response to therapy.

© | EE—
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Some of my thoughts about these measures...

RECIST and iRECIST procedures are efficient and standardised
surrogates for therapy efficacy.

BN — <20% increase of tumor burden
= = 220% increase of tumor burden
e i Median OS: 12.4 vs. 4.6 months
- P <0.001 . . .
iy Figure 3: 160 patients with
o | 4 .
° et advanced NSCLC treated with
g ' commercial nivolumab or
2 L pembrolizumab monotherapy -
o - tumour burden evolution at 8
weeks?.
0 ; 10 1'5

Months from landmark time

They are also very complex, radiologist - dependent and deriving a
precise and usable model for these processes seems a bit utopian.

2
"Tumor Response Dynamics of Advanced Non—small Cell Lung Cancer Patients Treated with PD-1 Inhibitors: Imaging
Markers for Treatment Outcome” - Nishino et al. 2017
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Simplification : combination of two latent phenomena

@ A significant and confirmed change in the total macroscopic
tumour load observed at baseline

if '35
[ > T L .
Z= i1 "= d;: relative size change for tumour i

0 otherwise

@ A confirmed appearance of new macroscopic lesions after the
beginning of therapy

1 if new lesions have appeared
w =
0 otherwise

Model with latent secondary outcomes

y:{ 1 (PD + SD)

= 1{(z4w
0 (PR+ CR) (#Fw=l
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Prediction of the outcome z : Multiple Instance Learning

We could try to predict a patient-leve
L. Niotal
would mimic Y 6;
i=1
@ Each tumour contributes separately to this patient-level score.
@ The resistance is encoded in the radiomic signature of the tumour at

baseline.

resistance score” (in [0,1]) that

Instances embedding Bag embedding Neural network

Radiomic bag

Radiomic resistance
score

‘ Weighted sum of instance-
level embeddings

Attention scores

2"Attention-based Deep Multiple Instance Learning” - llse et al. 2018
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Prediction of the outcome w

To predict the appearance of new macroscopic lesions despite the

therapy using only baseline information, we need patient - level
features.

@ Characterisation of the metastatic distribution at baseline

e Number of lesions
e Impacted organs

e Maximum distance between two lesions

@ Radiomic resistance score : resistance of already visible

macroscopic lesions provides information on the resistance of new
comers and microscopic lesions.

© Potential covariates (i.e clinical features)
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Presentation of the final model

Attention
scores

Multiple instance
regression

Radiomic bag

Uncertainty
MC dropout

Neural network\ .~ Predicted

classifier response

Feature

importance
SHAP

Patient description

@ Radiomic resistance score

@ Patient - level features

Interpretable and flexible approach trainable in an end-to-end manner
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