
Présentation Flash (5 min)

Multi Threading

2

Number of
processors

Multi threading (why ?)

3

Multi threading

4

Multi threading

5

Multi threading vs Multiprocessing

6

setup output lists
output1 = list()
output2 = list()
output3 = list()
for j in range(0, 10):
 # calc individual parameter value
 parameter = j * offset
 # call the calculation
 out1, out2, out3 = calc_stuff(parameter = parameter)
 # put results into correct output list
 output1.append(out1)
 output2.append(out2)
 output3.append(out3)

pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

Note that this won't work in the interactive interpreter.

import concurrent.futures
import time, random # add some random sleep time
offset = 2 # you don't supply these so
def calc_stuff(parameter=None): # these are examples.
 sleep_time = random.choice([0, 1, 2, 3, 4, 5])
 time.sleep(sleep_time)
 return parameter / 2, sleep_time, parameter * parameter
def procedure(j): # just factoring out the
 parameter = j * offset # procedure
 # call the calculation
 return calc_stuff(parameter=parameter)
def main():
 output1 = list()
 output2 = list()
 output3 = list()
 start = time.time() # let's see how long this takes

 with concurrent.futures.ProcessPoolExecutor() as executor:
 for out1, out2, out3 in executor.map(procedure, range(0, 10)):
 # put results into correct output list
 output1.append(out1)
 output2.append(out2)
 output3.append(out3)
 finish = time.time()
 # these kinds of format strings are only available on Python 3.6:
 # time to upgrade!
 print(f'original inputs: {repr(output1)}')
 print(f'total time to execute {sum(output2)} = sum({repr(output2)})')
 print(f'time saved by parallelizing: {sum(output2) - (finish-start)}')
 print(f'returned in order given: {repr(output3)}')
if __name__ == '__main__':
 main()

$ python3 -m futuretest
original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
total time to execute 33 = sum([0, 3, 3, 4, 3, 5, 1, 5, 5, 4])
time saved by parallellizing: 27.68999981880188 sec
returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Multithreading
Now change ProcessPoolExecutor to ThreadPoolExecutor,
and run the module again:

$ python3 -m futuretest
original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
total time to execute 19 = sum([0, 2, 3, 5, 2, 0, 0, 3, 3, 1])
time saved by parallellizing: 13.992000102996826 sec
returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
Now you have done both multithreading and multiprocessing!

Python, Multi threading - processing

multiprocessing is a package that supports spawning processes using an API
similar to the threading module. The multiprocessing package offers both local. It
runs on both Unix and Windows.

multiprocessing est un paquet qui permet l'instanciation de processus via la
même API que le module threading. Le paquet multiprocessing offre à la fois des
possibilités de programmation concurrente locale. Il tourne à la fois sur les
systèmes Unix et Windows.

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/fr/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/fr/3/library/threading.html#module-threading
https://docs.python.org/fr/3/library/multiprocessing.html#module-multiprocessing

7

Wainting for results

https://www.edureka.co/blog/what-is-mutithreading/

https://www.edureka.co/blog/what-is-mutithreading/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

