LITO

institut

@ M Inserm
[]
Curie Lascloncopour s sarté

Multi Threading

Présentation Flash (5 min)

Multi threading (why ?)

Number of
processors
10,000,000
./
1,000,000 t | =
. Intel CPU Trends 3
o MOdern Hardware (sources: Intel, Wikipedia, K. Olukotun) “f"
. . 100,000
1s designed for
thread level 10000

parallelism [Pentium 25
(TLP)

100
L] []
- L e * » '
. .
? /
1 '/ // B Transi IM(DWI e
@ Clock Speed (MHz)
a Power (W)
@ Pert/Clock (ILP}

0
Source: Tom Ba]']' & PPCP-54454 1970 1975 1980 1985 1990 1995 2000 2005 2010

LITO

Multi threading

-

Master Thread

Parallel Task |
Master Thread /" T). |

\

LITO

Multi threading

Multithreading

Program/Process

Thread 1 Thread 2 Thread 3 Thread 4

TASK1 TASK 2 TASK 3 TASK 4

 J A J A | Y

switching betn threads

CPU Fine-Grained

Superscalar

Multiprocessing Simultaneous
Coarse-Grained Multithreading

LITO

I
BRI EELULD EELULD IENN EEN
B NNOO EOOD RSN B EE
BRI OO0 e ITID N CE
L] e IIID II@D
OO0 U0 SOOI IDDD _________________
IO R NNNL DDII Il
BRI NN NN DDID [B8
=L OO OEned II@& N
BEEE B0 0000 EDNC LN
I) | i][] NN
OO EEE] IHED EH e
BRI NOJOIO NN e B
[Thread 1 []Thread 3 #H Thread 5
Thread 2] Thread 4 [] Idle slot

Source: Dr. Chris Lupo — CPE520 Advanced Computer Architecture Winter 2010

4

Multi threading vs Multiprocessing

Program/Process Multithreading Multiprocessing
Thread 1 Thread 2 Thread 3 Thread 4
TASK1 TASK 2 TASK 3 TASK 4 Process 1 Process 2 Process 3 Process 4
| | | |
"‘ * * * executes at thine
switching betn threads l Y Y Y
Core Core Core Core
CPU il 1 2 3 4

LITO

Python, Multi threading - processing

setup output lists

outputl = list()

output2 = list()

output3 = list()

for j in range(0, 10):
calc individual parameter value
parameter = j * offset
call the calculation
outl, out2, out3 = calc_stuff(parameter = parameter)
put results into correct output list
outputl.append(outl)
output2.append(out2)
output3.append(out3)

pool = multiprocessing.Pool(4)
outl, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

Note that this won't work in the interactive interpreter.

import concurrent.futures
import time, random # add some random sleep time
offset = 2 # you don't supply these so
def calc_stuff(parameter=None): # these are examples.
sleep_time = random.choice([0, 1, 2, 3, 4, 5])
time.sleep(sleep_time)
return parameter / 2, sleep_time, parameter * parameter
def procedure(j): # just factoring out the
parameter = j * offset # procedure
call the calculation
return calc_stuff(parameter=parameter)
def main():
outputl = list()
output2 = list()
output3 = list()
start = time.time() # let's see how long this takes

with concurrent.futurei.ProcessPooIExecutor() ‘as executor:
for outl, out2, out3 in executor.map(procedure, range(0, 10)): \
put results into correct output list
outputl.append(outl)
output2.append(out2)
output3.append(out3)
finish = time.time()
these kinds of format strings are only available on Python 3.6:
time to upgrade!
print(f'original inputs: {repr(outputl)}')
print(f'total time to execute {sum(output2)} = sum({repr(output2)})’)
print(f'time saved by parallelizing: {sum(output2) - (finish-start)}"')
print(f'returned in order given: {repr(output3)}')
if _name__=="'_main_"
main()

$ python3 -m futuretest

original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

total time to execute 33 = sum([0, 3, 3,4, 3,5, 1, 5, 5, 4])

time saved by parallellizing: 27.68999981880188 sec

returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Multithreading
Now change ProcessPoolExecutor to ThreadPoolExecutor,
and run the module again:

$ python3 -m futuretest

original inputs: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

total time to execute 19 = sum([0, 2, 3, 5, 2,0, 0, 3, 3, 1])

time saved by parallellizing: 13.992000102996826 sec

returned in order given: [0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
Now you have done both multithreading and multiprocessing!

multiprocessing is a package that supports spawning processes using an API
similar to the threading module. The multiprocessing package offers both local. It
runs on both Unix and Windows.

multiprocessing est un paquet qui permet l'instanciation de processus via la
méme API que le module threading. Le paquet multiprocessing offre a la fois des
possibilités de programmation concurrente locale. Il tourne a la fois sur les
systemes Unix et Windows.

LITO

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/fr/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/fr/3/library/threading.html#module-threading
https://docs.python.org/fr/3/library/multiprocessing.html#module-multiprocessing

Wainting for results

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread " -_ /4 2

https://www.edureka.co/blog/what-is-mutithreading/

LITO

https://www.edureka.co/blog/what-is-mutithreading/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

