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Why use a CNN?

If using a traditional neural network to classify images, with each input representing
a pixel, the number of weights quickly explodes
Spatial relationships between pixels not taken into account

Fully-connected 1

Input Hidden Output oole eature maps eap:?elf-ga s
la{:or layer la.VIcr il fe:‘”’IE fnaps = gl i i O
o ply1x)
Input #1 ;
Input #2 — S 574 : ’
5 % . + Output
Input #3 — > \ o< . o
X utputs
Input #4 \ 3 Input Convolutional Pooling 1 Convolutional  pogling2
‘ layer 1 layer 2
+ RelU + RelU
Standard multi-layer perceptron Want to use spatial relationships Example convolutional neural network with
(traditional neural network) two convolutional layers

* Instead use convolutional neural network, utilising successive feature maps
* Used by Alex Krizhevsky to win 2012 ImageNet image classification competition



Architecture of a CNN — Convolutional Layer

* Input image is convolved with a filter
* Edge detection and sharpening are examples of convolutions
* In a CNN the filters are learnt through training rather than pre-defined
e An activation function is then applied to introduce non-linearity (as in a traditional

neural network)
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Architecture of a CNN — Pooling Layer

* Pooling layers are commonly used to reduce the number of parameters and control
overfitting

* The size and stride of the pooling can be changed

 Two common pooling methods: Max Pooling and Average Pooling
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Architecture of a CNN — Fully Connected Layer

* The output from a series of convolutional layers is a set of high-level features,
hopefully well trained to be discriminative for the task

* A traditional multi-layer perceptron can then be used to combine these features in a
non-linear manner to classify the image

* ‘Fully Connected’ because every node from one layer is connected to every node in
the next
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Putting it together — Example Network

Network is trained as with a traditional neural network, using a gradient descent
» Successive layers learn increasingly complex features of the images
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More Complicated Networks
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Further Reading/References

Basic Introduction:

e https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

* https://medium.com/dataseries/basic-overview-of-convolutional-neural-network-cnn-4fcc7dbb4f17

* https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

* https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/

Stanford Course on Computer Vision:

* http://cs231n.stanford.edu/slides/2017/

Cool CNN Visualisation:

* https://www.cs.ryerson.ca/~aharley/vis/conv/

Network Architectures:
* Inception v3: https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

* ResNet: https://arxiv.org/pdf/1512.03385.pdf

* DesnetNet: https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a
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